
i

i

i

i

i

i

i

i

Model Checking Markov Chains:
Techniques and Tools

Ivan S. Zapreev

i

i

i

i

i

i

i

i

Graduation committee:

Prof. Dr. C. Hoede University of Twente, The Netherlands
(chairman)

Prof. Dr. Ir. J.-P. Katoen RWTH Aachen / University of Twente,
(promotor) Germany / The Netherlands
Prof. Dr. E. Brinksma University of Twente / Embedded Systems
(promotor) Institute, The Netherlands

Prof. Dr. W. Fokkink Vrije Universiteit Amsterdam, The Netherlands
Prof. Dr. Ir. B. R. Haverkort University of Twente, The Netherlands
Prof. Dr. Ir. H. Hermanns Saarland University, Germany
Prof. Dr. M. Kwiatkowska Oxford University, England
Prof. Dr. J. C. van de Pol University of Twente, The Netherlands
Dr. H. L. S. Younes Google Incorporated, United States

IPA Dissertation Series 2008-11.
CTIT Ph.D.-Thesis Series No. 08-113, ISSN 1381-3617.
ISBN: 978-90-8570-298-6

The research reported in this dissertation has been carried out under the auspices of the Insti-

tute for Programming Research and Algorithmics (IPA) and within the context of the Center

for Telematics and Information Technology (CTIT). The research funding was provided by the

NWO Grant through the project: Model Checking Infinite-State Markov Chains (MC=MC).

Translation of the abstract: Ir. Tom Staijen and Dr. David N. Jansen.
Typeset by LATEX.
Cover design: Airida Rekštytė.
Publisher: Wöhrmann Printing Service - http://www.wps.nl.

Copyright c© 2008 by Ivan S. Zapreev, Enschede, The Netherlands.

http://www.wps.nl

i

i

i

i

i

i

i

i

MODEL CHECKING MARKOV CHAINS:

TECHNIQUES AND TOOLS

DISSERTATION

to obtain the doctor’s degree
at the University of Twente, on the authority of
the rector magnificus, Prof. Dr. W.H.M. Zijm,

on account of the decision of the graduation committee
to be publicly defended

on Friday, March 7, 2008 at 15:00

by

Ivan S. Zapreev
born on 22 November 1979

in Novosibirsk, Russian Federation

i

i

i

i

i

i

i

i

The dissertation has been approved by the promotors:

Prof. Dr. Ir. Joost-Pieter Katoen and Prof. Dr. Ed Brinksma.

i

i

i

i

i

i

i

i

Abstract

Probabilistic model checking has been a successful research field in the recent decades.
This dissertation deals with four important aspects of model checking Markov chains:
the development of efficient model-checking tools, the improvement of model-checking
algorithms, the efficiency of the state-space reduction techniques, and the development
of simulation-based model-checking procedures.

We start by introducing MRMC, a model checker for discrete-time and continuous-
time Markov reward models. It supports reward extensions of PCTL and CSL, and
allows for the automated verification of properties concerning long-run and instanta-
neous rewards as well as cumulative rewards. In particular, it supports to check the
reachability of a set of goal states (by only visiting legal states before) under a time
and an accumulated reward constraint. Several numerical algorithms and extensions
thereof are included in MRMC. We study the efficiency of the tool in comparison with
several probabilistic model checkers by comparing verification times and peak memory
usage for a set of standard case studies. The study considers the model checkers E
⊢MC2, PRISM (sparse and hybrid mode), Ymer and VESTA, and focuses on fully
probabilistic systems. Several of our experiments show significantly different run times
and memory consumptions between the tools – up to various orders of magnitude –
without, however, indicating a clearly dominating tool. For statistical model checking,
Ymer prevails whereas for the numerical tools MRMC and PRISM (sparse) are rather
close.

Further, we consider the time-bounded reachability problem for continuous-time
Markov chains (CTMCs), the efficient algorithms for which are at the heart of proba-
bilistic model checkers such as PRISM and E ⊢MC2. For large time spans, on-the-fly
steady-state detection is commonly applied. To obtain correct results (up to a given
accuracy), it is essential to avoid detecting premature stationarity. We give a detailed
account of criteria for steady-state detection in the setting of time-bounded reacha-
bility. This is done for forward- and backward-reachability algorithms. As a spin-off
of this study, new results for on-the-fly steady-state detection during CTMC transient
analysis are reported. Based on these results, a precise procedure for steady-state de-
tection for time-bounded reachability is obtained. Experiments show the impact of
these results in probabilistic model checking.

After that we study the effect of bisimulation minimization in model checking of
monolithic discrete- and continuous-time Markov chains as well as variants thereof with
rewards. Our results show that – as for traditional model checking – enormous state
space reductions (up to logarithmic savings) may be obtained. While in traditional
model checking, bisimulation minimisation pays off only rarely (because it is rather

v

i

i

i

i

i

i

i

i

vi

slow), we find often enough that the verification time of the original Markov chain
exceeds the minimisation time plus the verification time of the reduced chain. We
consider probabilistic bisimulation as well as versions thereof that are tailored to the
property to be checked.

We conclude our work by deriving new simulation-based techniques for model check-
ing CSL properties on continuous-time Markov chains. The techniques provided so far
were based on hypothesis testing and did not support model checking of all the main
CSL operators. Our approach is based on discrete-event simulation and sequential
confidence intervals. We provide model-checking algorithms for the main three CSL
operators: time-interval until, unbounded until and steady-state. The experimental
comparison of the suggested algorithms, integrated in MRMC, with the techniques
based on hypothesis testing, implemented in Ymer and VESTA, shows that our ap-
proach is generally faster and that MRMC can handle more properties than the other
statistical tools.

i

i

i

i

i

i

i

i

Samenvatting

Het onderzoeksgebied van probabilistisch model checking heeft de afgelopen decen-
nia veel successen geboekt. Deze dissertatie behandelt vier belangrijke aspecten van
model checking van Markovketens: de ontwikkeling van efficiënte model-checking-
gereedschappen, de verbetering van model-checking-algoritmen, de efficiëntie van tech-
nieken om de toestandsruimte te verkleinen en de ontwikkeling van simulatiegebaseerde
model-checking-methoden.

We beginnen met het introduceren van MRMC, een model-checker voor discrete-
tijd en continue-tijd Markov-kostenmodellen. Hij ondersteunt kostenuitbreidingen van
PCTL en CSL en kan automatisch eigenschappen betreffende lange-termijn en instan-
tane kosten verifiëren, en ook betreffende cumulatieve kosten. Meer in bijzonder biedt
hij de mogelijkheid om de bereikbaarheid van doeltoestanden te onderzoeken (via
enkel toegestane toestanden) met een restrictie op tijdsduur en opgebouwde kosten.
Meerdere numerieke algoritmen en uitbreidingen hiervan worden ondersteund door
MRMC.

We vergelijken de efficiëntie van het gereedschap met verschillende probabilistische
model checkers op basis van verificatieduur en maximaal geheugengebruik voor een
verzameling standaardvoorbeelden. De studie kijkt naar E ⊢MC2, PRISM (zowel
sparse als hybride modus), Ymer en VESTA, en beperkt zich tot volledig proba-
bilistische systemen. De experimenten tonen significante verschillen in tijdsduur en
geheugengebruik tussen de gereedschappen – tot meerdere ordegroottes – zonder echter
een duidelijk winnend gereedschap aan te kunnen wijzen. Bij statistisch model check-
ing domineert Ymer, maar bij numerieke gereedschappen eindigen MRMC en PRISM
(sparse) zeer dicht bij elkaar.

Vervolgens bespreken we het probleem van tijdsbeperkte bereikbaarheidseigenschap-
pen; efficiënte algoritmen daarvoor vormen het hart van de probabilistische model
checkers zoals PRISM en E ⊢MC2. Bij lange tijdsbeperkingen wordt er vaak gebruik
gemaakt van on-the-fly detectie van evenwichtstoestanden. Om correcte resultaten
(met een bepaalde exactheid) te verkrijgen is het essentieel om voortijdige detectie
te voorkomen. We geven een gedetailleerde lijst van criteria voor detectie van even-
wicht in een context van tijdsbeperkte bereikbaarheid. Hierbij is gekeken naar zowel
voorwaarts- als achterwaarts-werkende bereikbaarheidsalgoritmen. Als bijkomend re-
sultaat van deze studie kunnen we nieuwe inzichten in on-the-fly evenwichtsdetectie
bij transiente analyse van CTMCs vermelden. Met behulp van deze resultaten komen
we tot een precieze procedure voor het detecteren van evenwichtstoestanden bij tijds-
beperkte bereikbaarheid. Experimenten laten de uitwerkingen van deze resultaten zien
in probabilitisch model checking.

vii

i

i

i

i

i

i

i

i

viii

Daarna bestuderen we de effecten van bisimulatie-minimalisatie voor model check-
ing van monolithische discrete- en continue-tijd Markovketens maar ook varianten daar-
van met kosten. Onze resultaten laten zien dat – zoals ook voor traditionele model
verificatie – de toestandsruimte sterk verkleind kan worden (tot logaritmische besparin-
gen). Maar terwijl in traditioneel model checking bisimulatie-minimalisatie slechts
zelden loont (omdat zijzelf relatief langzaam is), vinden we hier vaak de situatie dat
de tijd voor verificatie van de oorspronkelijke Markovketen langer is dan de tijd voor
minimalisatie plus de tijd voor verificatie van het gereduceerde model. We bespreken
probabilitische bisimulatie en variaties daarop die zijn aangepast aan de te controleren
eigenschap.

We ronden ons werk af met het afleiden van nieuwe simlatie-gebaseerde technieken
voor model checking van CSL-eigenschappen en continue-tijd Markovketens. De tot
dusver bestaande technieken waren gebaseerd op testen van hypothesen en onderste-
unden niet alle belangrijke CSL-operatoren. Onze aanpak is gebaseerd op discrete-
gebeurtenissen-simulatie en sequentiele confidentie-intervallen. We tonen model-check-
ing-algoritmen voor de belangrijkste drie CSL-operatoren: tijds-interval until, niet
tijdsbeperkte until en evenwichtstoestands-operator. In experimenten vergelijken wij
de voorgestelde algoritmen, gëıntegreerd in MRMC, met de technieken gebaseerd op
testen van hypothesen, gëımplementeerd in Ymer en VESTA; daaruit blijkt dat onze
aanpak over het algemeen sneller is en dat MRMC meer eigenschappen aankan dan de
andere statistische gereedschappen.

i

i

i

i

i

i

i

i

Acknowledgments

I am thankful to many people for their help and support during my work on this disser-
tation. Below, I would like to acknowledge those who participated in my supervision,
research, and everyday life.

First of all I would like to thank my direct supervisor Joost-Pieter Katoen for
guiding me through the not always serene waters of research. Without his care, en-
couragement and steering this thesis would never be written. Next, I should mention
colleagues who contributed to the presented work in many different ways, such as:
joint papers, reviews of the thesis chapters, valuable discussions, finding serious flaws
in early versions of my work, assistance with the MRMC tool development, and etc.
In order to reflect everyone’s input (chapter wise), I summarize it in the table below.

Name Papers Reviews Discussions Flaws MRMC

Prof. Dr. Ed Brinksma Ch. 1 – 7

Prof. Dr. Ir. Boudewijn Haverkort Ch. 6

Dr. Ir. Pieter-Tjerk de Boer Ch. 6 Ch. 6

Dr. Henrik Bohnenkamp Ch. 5, 6 Ch. 3, 5, 6

Dr. David N. Jansen Ch. 2, 4 Ch. 5, 6 Ch. 2 – 6 Ch. 3, 6 Ch. 2

Dr. Mariëlle Stoelinga Ch. 2 Ch. 2

Dr. H̊akan L. S. Younes Ch. 6, 7 Ch. 6

MSc. Tim Kemna Ch. 4 Ch. 4

MSc. Maneesh Khattri Ch. 2 Ch. 3, 2 Ch. 2

MSc. Marcel Oldenkamp Ch. 2 Ch. 2

Christina Jansen Ch. 2, 7

I want to acknowledge our secretary Joke Lammerink for all her care and help. She
is the one who makes the clock of the Formal Methods and Tools group ticking. I am
also grateful to Miranda van Wijk who is the most professional P&O-advisor I have
ever seen.

I am sincerely grateful to my friends Henrik Bohnenkamp, Erika Ábrahám, Tom
Staijen, Julius Schwartzenberg, Rajasekhar Kakumani and Tomas Krilavičius for all
the wonderful time we spent together and all the support they have given me. Dear
friends, you made the last four years of my life worth it. I could seldom meet my
Russian friends Slava Klochkov and Sergey Brazhnik, but we have kept in touch over
the years and therefore I thank them.

ix

i

i

i

i

i

i

i

i

x

Last but not least, I would like to thank my family. My beautiful wife Galina, who
is the wisest woman I have ever met. My beloved father and mother, who gave me life
and made me who I am. My brother Peter, whom I am proud of. My grandmother
Belousova Nina Viktorovna and grandfather Belousov Anatoly Fedorovich, who taught
me to love mathematics and showed me the wonderful world of science. Thank you all
for being in my heart.

i

i

i

i

i

i

i

i

Contents

Introduction xv
1 System validation . xv
2 Model checking Markov chains . xvi
3 Outline of the dissertation . xvii

I Numerical Model Checking 1

1 Preliminaries 3
1.1 Markov chains . 3

1.1.1 Discrete-time Markov chains . 5
1.1.2 Continuous-time Markov chains 7

1.2 Model checking Markov chains . 10
1.2.1 Model checking discrete-time Markov chains 11
1.2.2 Model checking continuous-time Markov chains 13
1.2.3 Model checking Markov reward models 15

1.3 Case studies . 16
1.3.1 Synchronous Leader Election Protocol (SLE) 16
1.3.2 Birth-Death Process (BDP) . 17
1.3.3 Randomized Mutual Exclusion (RME) 18
1.3.4 Crowds Protocol (CP) . 18
1.3.5 Tandem Queuing Network (TQN) 18
1.3.6 Cyclic Server Polling System (CPS) 19
1.3.7 Wireless Group Communication Protocol (WGC) 20
1.3.8 Simple Peer-To-Peer Protocol (P2P) 20
1.3.9 Workstation Cluster (WC) . 20

1.4 Probabilistic model checking tools . 21
1.4.1 PRISM . 21
1.4.2 E ⊢MC2 . 21
1.4.3 Ymer . 22
1.4.4 VESTA . 22

1.5 Conclusion . 22

xi

i

i

i

i

i

i

i

i

xii CONTENTS

2 Markov Reward Model Checker 25
2.1 Functionality . 26
2.2 Implementation details . 28

2.2.1 Data structures . 29
2.2.2 Basic algorithms . 32

2.3 Tool usage . 32
2.4 Experiments and comparison . 35

2.4.1 Experimental setup . 36
2.4.2 Experimental results and analysis 38
2.4.3 Conclusion . 48

2.5 Implementation analysis . 49
2.5.1 Steady-state property . 50
2.5.2 Reachability property . 51
2.5.3 Bounded-reachability properties 51
2.5.4 Summary . 52

2.6 Implementation metrics . 52
2.7 MRMC test suite . 54

2.7.1 The test-suite metrics . 55
2.7.2 The test-suite coverage . 55

2.8 MRMC and the third-party projects . 56
2.9 Conclusion . 58

3 On-The-Fly Steady-State Detection 59
3.1 Introduction . 60

3.1.1 Transient probabilities . 61
3.1.2 Time-bounded reachability . 62

3.2 Fox-Glynn error bound revisited . 63
3.3 Improved steady-state detection . 64

3.3.1 Transient analysis . 64
3.3.2 Time-bounded reachability . 66
3.3.3 Summary of results . 67

3.4 Safely detecting stationarity . 67
3.5 Experimental results . 69
3.6 Time complexity and empirical evaluation 72
3.7 Conclusion . 74

4 Bisimulation Minimization 75
4.1 Bisimulation . 76
4.2 Experiments . 78

4.2.1 Discrete time . 79
4.2.2 Continuous time . 82
4.2.3 Rewards . 84

4.3 Conclusion . 85

i

i

i

i

i

i

i

i

CONTENTS xiii

II Model Checking by Discrete Event Simulation 87

5 Preliminaries 89
5.1 Simulating random variables . 91
5.2 Point estimates . 92
5.3 Confidence intervals . 93

5.3.1 The standard confidence interval 94
5.3.2 Normally-distributed random variables 95
5.3.3 The width of the confidence interval 96
5.3.4 An example . 97

5.4 Terminating simulation . 97
5.5 Steady-state simulation . 98
5.6 Discrete-time method for simulating CTMCs 102
5.7 Bernoulli trials . 104

6 Model checking CSL 107
6.1 Confidence intervals and model checking 108

6.1.1 Confidence of model checking results 108
6.1.2 Checking the c. i. against the probability constraint 110
6.1.3 Confidence intervals and hypothesis testing 111

6.2 Unbounded-until operator . 111
6.2.1 Bounding Prob (s0, A U G) by transient probabilities 113
6.2.2 Deriving a c. i. of αN

k . 114
6.2.3 Deriving c. i. of Prob (s0, A U G) 117
6.2.4 Choosing the best c. i. for Prob (s0, A U G) 120
6.2.5 The c. i. dependency on the sample size and the simulation depth 124
6.2.6 The model-checking procedure 130

6.3 Steady-state operator . 132
6.3.1 The pure DES approach . 133
6.3.2 The hybrid approach . 139

6.4 Time-interval until operator . 141
6.5 Conclusion . 145

7 Experiments 147
7.1 Tool parameters . 147
7.2 Experimental setup . 149
7.3 Experimental data . 150

7.3.1 Cyclic Server Polling System (CPS) 151
7.3.2 Tandem Queuing Network (TQN) 152

7.4 Conclusion . 153

III Conclusion 161

8 Concluding remarks 163

i

i

i

i

i

i

i

i

xiv CONTENTS

IV Appendices 185

A Markov Reward Model Checker 187
A.1 Profiling MRMC with gprof . 187
A.2 Test coverage of MRMC . 188

B On-The-Fly Steady-State Detection 191
B.1 Fox-Glynn error bound revisited . 191
B.2 Criteria for steady-state detection . 192

B.2.1 Transient analysis . 193
B.2.2 Backward computations . 196

B.3 Safely detecting stationarity . 200

C Model Checking by Discrete Event Simulation 205
C.1 Unbounded-until operator . 205

C.1.1 Dependency of the confidence intervals 207
C.1.2 Confidence intervals, the closed form 218
C.1.3 The dependency from sample size and simulation length 224

C.2 Steady-state operator . 227

i

i

i

i

i

i

i

i

Introduction

In our everyday life we become more and more confronted with information technology,
either explicitly, when dealing with personal computers or mobile phones, or implicitly,
when using TVs, cars, trains, etc. It goes without saying that now our lives are more
than ever dependent on the reliability of various software and hardware components.

It is indeed just a small inconvenience if a mobile phone malfunctions or a video
camera fails to respond accurately to its controls, but a mistake in software controlling
a nuclear power plant or a radiation therapy machine can have dramatic consequences.
Moreover, even when not a matter of life and death, errors in software and hardware
can be financially serious if a faulty product has to be recalled or replaced. For example,
small mistakes in Intel’s Pentium floating-point division unit and in the flight control
of Ariane-5 missile both caused losses worth of hundreds of millions of US dollars.

This is why system validation, the process of determining the correctness of sys-
tem specifications, designs and implementations is of the utmost importance. It is
well-known that complexity of developed systems grows rapidly. Nevertheless, current
practices, for instance in software engineering, show that system designs are mostly
validated by humans with very little use of tools and especially tools with a sound
mathematical basis. All that facilitates the need in techniques and tools for an auto-
mated system validation.

Further, in Section 1 we briefly discuss various system-validation techniques along
with possible levels of their automation. One of them, model checking, is considered in
more detail in Section 2. There we specifically talk about model checking of Markov
chains, as it is the main topic of this dissertation. Finally, in Section 3 we present a
high-level outline of our research.

1 System validation

System validation techniques can be divided into four main categories: testing, simu-
lation, formal verification, and model checking.

Testing is performed on a real implementation of the system or on its prototype.
The technique is an operational way of checking the conformance between the sys-
tem implementation and the abstract system specification. Therefore, only a partial
evaluation of the system design is possible.

Simulation is similar to testing, but is based on an executable system model and
thus only allows for a quick and shallow evaluation of the design quality. Clearly, this
approach is not suitable for finding subtle system errors.

xv

i

i

i

i

i

i

i

i

xvi INTRODUCTION

Formal verification mathematically proves the correctness of the design, provided
in the form of the system model, with respect to a formal specification. In practice,
writing a complete formal proof of correctness for real-world hardware and software
is difficult. This problem is tackled by automatic and semi-automatic approaches to
formal verification. Unfortunately, most of the suggested techniques require detailed
human guidance.

Model checking is a technique that can be fully automated. In this approach desired
system properties, stated in some logical formalism (such as temporal logic), are verified
against the system model, e. g. employing an exhaustive state-space exploration.

It is clear that for being successful any approach to system validation must allow
for a good degree of automation. Therefore, in the field of testing there are algorithms
for test generation and test selection based on the system specification. In formal ver-
ification there are proof assistants, proof checkers and theorem provers that, however,
often require quite some expertise from the user. Model checking is perhaps the only
technique that provides full support for automatic verification. All model-checking
algorithms, implemented in software, do not require any guidance from the user. This
is why model checking raises an increasing interest in industry – various companies,
e. g. Intel and IBM, have research groups working on this topic and develop their own
in-house model checkers.

To put it in a nutshell, model checking is an automated technique that establishes
whether certain qualitative properties such as deadlock-freedom or request-response
requirements (“does a request always lead to a response?”) hold in a model of the
system under consideration. Such models are typically transition systems that specify
how the system may evolve during execution. Properties are usually expressed in
temporal extensions of propositional logic, such as Linear Time Logic (LTL) [114] or
Computational Tree Logic (CTL) [32]. In the remainder of this dissertation we will
concentrate on model checking of probabilistic systems.

2 Model checking Markov chains

Since the seminal work of Hansson and Jonsson [56], adapting model checking to prob-
abilistic systems has been a rather active research field. This has resulted in efficient
algorithms for model-checking discrete- and continuous-time Markov Chains (DTMCs
and CTMCs), their reward (cost) extensions, as well as Markov decision processes.

The applicability of probabilistic model checking ranges from areas such as ran-
domized distributed algorithms to planning and AI, security [109], and even biologi-
cal process modeling [95]. Probabilistic model-checking engines have been integrated
in existing tool chains for widely used formalisms such as stochastic Petri nets [38],
Statemate [19], the stochastic process algebra PEPA [67], and a probabilistic variant
of Promela [9]. Popular logics are Probabilistic CTL (PCTL) [56] and Continuous
Stochastic Logic (CSL) [8].

The typical kind of properties that can be checked are time-bounded reachability
properties – “Does the probability to reach a certain set of goal states (by avoiding
bad states) within a maximal time span exceed 0.5?” – and long-run averages – “In
equilibrium, does the likelihood to leak confidential information remain below 10−4?”
Extensions for reward-based models allow for checking more involved properties that

i

i

i

i

i

i

i

i

3. OUTLINE OF THE DISSERTATION xvii

refer to e. g., the expected cumulated reward or the instantaneous reward rate of com-
putations. Intricate combinations of numerical or simulation techniques for Markov
chains, optimization algorithms, and traditional LTL or CTL model-checking algo-
rithms result in simple, yet efficient verification procedures. Verifying time-bounded
reachability properties on models of tens of millions of states usually is a matter of
minutes or even seconds.

Unfortunately, like in the traditional setting, probabilistic model checking suffers
from the state-space explosion problem: the number of states grows exponentially
in the number of system components and cardinality of data domains. This poses
three main directions in further development of probabilistic model checking: advances
of efficient state-space reduction techniques, improvement of the model-checking al-
gorithms’ performance, and introduction of simulation-based verification procedures.
This work tackles all these aspects including realization of verification algorithms in a
new probabilistic model checker.

3 Outline of the dissertation

This dissertation is divided into four parts. Part I contains results related to numerical
model checking of PCTL, CSL, their reward extensions, and tool development. Part II
is devoted to new techniques in model checking CSL using discrete-event simulation.
Part III concludes the main scope of the thesis by summarizing key results and out-
lining where, in our opinion, further research activities should be undertaken. Part IV
contains supplementary material such as theorem proofs and tool-profiling data. Fur-
ther, we describe the content of the main rubrics of this dissertation, i. e. Part I and
II. At the end, we present a list of publications this work resulted in.

Part I: Numerical Model Checking.

We begin with Chapter 1 containing necessary preliminary material on model-checking
Markov chains. In this chapter, we first introduce Markov chains along with the tran-
sient and stationary probabilities, and numerical methods for computing them. Then,
we proceed with a brief introduction into model checking DTMCs, CTMCs, and re-
ward extensions thereof. The rest of preliminaries is devoted to a description of case
studies and various probabilistic model checkers used in this work for experiments and
comparison.

In Chapter 2, we report on a new probabilistic model checker named Markov Re-
ward Model Checker (MRMC). This tool is used as an experimental platform for eval-
uating our algorithms and comparing their efficiency with techniques implemented in
other model checking tools. Chapter 2 contains information about the functionality of
MRMC, its performance, implementation metrics and use in third party projects. We
also provide a comparative experimental study of MRMC and a set of state-of-the-art
probabilistic model checkers.

On-the-fly steady-state detection is an optimization technique used in model check-
ing of time-bounded reachability properties on CTMCs [87]. For large time spans,
on-the-fly steady-state detection is commonly applied but for obtaining correct results
(up to a given accuracy), it is essential to avoid detecting premature stationarity. The

i

i

i

i

i

i

i

i

xviii INTRODUCTION

latter, however, is not always the case. Therefore, in Chapter 3 we give a detailed ac-
count of criteria for steady-state detection in the setting of time-bounded reachability
considering both forward and backward reachability algorithms. In essence, we im-
prove on-the-fly steady-state detection for CTMC transient analysis and time-bounded
reachability problem by refining the error bounds and deriving a precise steady-state
detection procedure.

It is a well known fact that in traditional model checking bisimulation minimization
allows for enormous state-space reductions (up to exponential savings) but is impracti-
cal due to high minimization times. So far, the impact of bisimulation minimization on
probabilistic model checking was left undisclosed. In Chapter 4, we study the effect of
bisimulation minimization in model checking of DTMCs, CTMCs, and their reward ex-
tensions. In our work we consider probabilistic bisimulation as well as versions thereof
that are tailored to the property to be checked.

Part II: Model Checking by Discrete Event Simulation.

Numerical analysis and statistical techniques based on sampling and Monte Carlo sim-
ulation are two distinct approaches to model checking Markov chains. Recent develop-
ments in model checking of CTMCs resulted in simulation-based algorithms for model
checking a subset of CSL that, however, does not include all the main operators of this
logic. The suggested algorithms employ simple and sequential hypothesis testing and
do not suffer from the state-space explosion. Our contribution in this field is discussed
in Part II.

In Chapter 5 we provide the preliminary material required for Chapters 6 and 7.
In this chapter, we start with discussing point estimates and confidence intervals for
mean values of random variables. Further, we consider their application in terminating
and steady-state simulations, an approach of Hordijk et al. [70] for simulating CTMCs,
and confidence intervals for Bernoulli trials.

Based on the techniques discussed in Chapter 5, we propose an approach to model
checking CSL using discrete-event simulation and sequential confidence intervals. The
new algorithms for model checking all the main operators of CSL are devised in Chap-
ter 6. To show the feasibility of our approach we perform an experimental comparison
of the suggested techniques, implemented in MRMC, and the ones based on hypothesis
testing, implemented in statistical model-checking tools Ymer and VESTA. The results
of this comparison are provided in Chapter 7.

Published results.

Most results of Part I have been published as:

• Joost-Pieter Katoen, Maneesh Khattri, and Ivan S. Zapreev. A Markov Reward
Model Checker. In Quantitative Evaluation of Systems (QEST), pages 243–244.
IEEE Computer Society, 2005.

• Joost-Pieter Katoen and Ivan S. Zapreev. Safe On-The-Fly Steady-State De-
tection for Time-Bounded Reachability. In Quantitative Evaluation of Systems
(QEST), pages 301–310. IEEE Computer Society, 2006.

i

i

i

i

i

i

i

i

3. OUTLINE OF THE DISSERTATION xix

• Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreev, and David N. Jansen. Bisim-
ulation Minimization Mostly Speeds Up Probabilistic Model Checking. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), volume
4424 of LNCS, pages 87–101. Springer, 2007.

• David N. Jansen, Joost-Pieter Katoen, Marcel Oldenkamp, Marielle Stoelinga,
and Ivan S. Zapreev. How Fast and Fat Is Your Probabilistic Model Checker?
In Haifa Verification Conference (HVC), volume 4899 of LNCS, pages 65–79.
Springer, 2008.

The results presented in Part II are new and therefore have not yet been published.

i

i

i

i

i

i

i

i

xx INTRODUCTION

i

i

i

i

i

i

i

i

Part I

Numerical Model Checking

1

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

Chapter 1

Preliminaries

In this chapter, we introduce the preliminary material used throughout the thesis.
The reader is assumed to be familiar with classical probability theory as can be found
in [42, 18]. We start with Section 1.1 introducing the discrete- and continuous-time
finite-state Markov chains as they are the main underlying models in our research.
In addition, we discuss the transient and stationary probabilities of Markov chains
along with the ways of computing them. This material is immediately put to use in
Section 1.2. There we explain the main concepts of model checking Markov chains and
show how some of the model-checking procedures can be reduced to graph analysis and
computing transient and stationary probabilities. We conclude Section 1.2 by briefly
describing model checking of Markov reward models. Further, in Section 1.3 we discuss
real-life systems that can be modeled as Markov chains. These systems are commonly
used as benchmark problems in probabilistic model checking and therefore we only
concentrate on a high-level description thereof. The set of most known tools that allow
for probabilistic verification is presented in Section 1.4. These tools and models are
used for comparative studies and experiments provided in this dissertation. Section 1.5
concludes.

1.1 Markov chains

Markov chains are a special case of stochastic processes. Therefore, we first briefly
introduce the latter ones, and explain the set of conditions needed for a stochastic
process to be called a Markov chain. Further we proceed with a classification of Markov
chain states and give definitions of discrete- and continuous-time Markov chains along
with the ways of computing their transient and stationary probabilities. For more
information on Markov chains we refer to standard textbooks such as [134]. Most of
the results provided in this section can be found in [59, 131]

A stochastic process is a collection of random variables {Xt | t ∈ T } defined on a
probability space and indexed by a parameter t which can take values in T . Typically
t is assumed to represent time. The values of Xt are called states. The set of all
possible states of the stochastic process is called the state space and is denoted as
S. Clearly, the state space can be either continuous or discrete. In the former case
we deal with a continuous-state stochastic process and in the latter with a discrete-

3

i

i

i

i

i

i

i

i

4 CHAPTER 1. PRELIMINARIES

state stochastic process, which is called a chain and for convenience we assume that
S = {0, 1, 2, . . . }. A similar classification can be made regarding the index set T . A
denumerable set leads to the discrete-time stochastic process whereas a continuous set
leads to the continuous-time stochastic process.

A stochastic process is called a Markov process if for any t0 < . . . < tn < tn+1

the distribution of Xtn+1 , given the values of Xt0 , . . . ,Xtn
(s0, . . . , sn ∈ S respectively),

only depends on Xtn
, i. e., for any sn+1 ∈ S:

Prob
(
Xtn+1 ≤ sn+1 | Xtn

= sn

)
= Prob

(
Xtn+1 ≤ sn+1 | Xt0 = s0, . . . ,Xtn

= sn

)
.

(1.1)
This equation is generally known as the Markov property. Most often, Markov processes
used for probabilistic model checking are invariant to time shifts, i. e., for any t, t′ ∈ T ,
such that t′ > t, and s′, s ∈ S we have:

Prob (Xt′ ≤ s | Xt = s′) = Prob
(
X(t′−t) ≤ s | X0 = s′

)
(1.2)

In this case we have a time-homogeneous Markov process for which the next state only
depends on the current state but neither on the previous states nor on how long we
have been already in the current state.

In this thesis, we consider a Markov chain to be a time-homogeneous Markov process
with the discrete state space S and the index set T = R≥0 for continuous time or
T = N≥0 for discrete time. Moreover, unless stated otherwise, we assume a finite
state space S = {1, . . . , N} with |S| = N . Conditions (1.1) and (1.2) mean that in a
time-homogeneous Markov process, the state residence times must be random variables
that have a memoryless distribution. The latter implies that the state residence times
in a continuous-time Markov chain need to be exponentially distributed, and in a
discrete-time Markov chain need to be geometrically distributed. Before we proceed
with more details on discrete- and continuous-time Markov chains, we provide several
useful definitions.

Definition 1 A Markov chain is called irreducible if for any two states s, s′ ∈ S there
exists t ∈ T such that Prob (Xt = s′ | X0 = s) > 0.

Informally, irreducible means that every state is reachable from every other state.

Definition 2 A state s ∈ S of a Markov chain is called absorbing if for any t ∈ T
and s′ ∈ S such that s′ 6= s we have Prob (Xt = s′ | X0 = s) = 0.

Clearly, an absorbing state is a state from which there is a zero probability of exiting.

Definition 3 A state s ∈ S of a Markov chain is called transient if the following holds:

lim
t→∞

(Prob (Xt = s | X0 = s)) = 0.

The limit above states that, the probability to return to the transient state with time
going to infinity is zero.

Definition 4 A Markov chain is called absorbing if for any non-absorbing state s ∈ S
there exists an absorbing state s′ ∈ S and t ∈ T such that Prob (Xt = s′ | X0 = s) > 0.

Now, with the main definitions introduced we proceed with the formal representa-
tion of continuous- and discrete-time Markov chains. We will also explain the ways of
computing their transient and stationary probabilities.

i

i

i

i

i

i

i

i

1.1. MARKOV CHAINS 5

1.1.1 Discrete-time Markov chains

Below we give a formal definition of a discrete-time Markov chain (DTMC), introduce
the transient and stationary probabilities of the DTMC, and talk about their compu-
tation. At the end, we concentrate on the steady-state detection technique that allows
to increase efficiency when computing transient probabilities of the DTMC.

Definition 5 Let AP be a fixed and finite set of atomic propositions then a (labelled)
DTMC is a tuple D = (S, P, L) where S is a finite set of states, P : S ×S → [0, 1] is

a probability matrix such that
∑

s′∈S P (s, s′) = 1 for all s ∈ S, and L : S → 2AP is a
labeling function which assigns to each state s ∈ S the set L(s) of atomic propositions
that hold in s.

The matrix entry P (s, s′) denotes the probability to move from state s to state
s′ in one step. A path through the DTMC is a sequence of states σ = s0 s1 s2 . . .
with P (si, si+1) > 0 for all i. Let Path

D denote the set of all paths in the DTMC D,
then for any σ ∈ Path

D we define σ[i] to be the (i+1)th state of σ, i. e., σ[i] = si. The
probability space on Path

D can be defined using the standard Borel-space construction.
Note that here we do not dwell upon the distinction between finite and infinite paths.

Transient probabilities

Let
−→
po be a row vector representing the initial-probability distribution of the DTMC,

i. e., po
s denotes the probability to be initially in state s. Then the transient probabilities

of the DTMC, with time m ∈ N, are defined by the following recursive equation:

−−−−→
po (m) =

−−−−−−→
po (m−1) ·P (1.3)

where po
s′ (m) is the probability to be in state s′ ∈ S at time m given the initial

distribution vector
−−−→
po (0) =

−→
po.

Stationary probabilities

Definition 6 The limiting state-probability1 of the DTMC is a vector
−−→
po,∗ such that:

−−→
po,∗ = lim

m→∞

−−−−→
po (m) (1.4)

Note that po,∗
s is the probability of being in the state s when taking a snapshot after a

long time. Whenever the limit exists, it is also the solution of the following system of
linear equations:

−→p = −→p · P,
∑

i∈S

pi = 1 (1.5)

In case the limit (1.4) does not exist, Equation (1.5) still has solutions. Note that
in case of an irreducible DTMC, Equation (1.5) has a unique solution and otherwise

1The index “*” in Equation (1.4) will be used to distinguish between the exact probability values
and their approximations introduced in Chapter 3.

i

i

i

i

i

i

i

i

6 CHAPTER 1. PRELIMINARIES

infinitely many. The solution of Equation (1.5) is known as the stationary or steady-
state distribution. It gives the proportion of time the DTMC spends in every state in
the long run.

Before we proceed with Theorem 1 that states when the DTMC has unique limiting
and steady-state distributions, we need to define the notion of an aperiodic DTMC.
The latter is done using the notion of periodic states.

Definition 7 A state s of the DTMC is called periodic if for some d > 1 it holds that
for all n ∈ N≥1, such that n mod d 6= 0, the probability to return to the state s in n
steps is 0.

Definition 8 The DTMC is called periodic if one of its states is periodic.

Definition 9 The DTMC is called aperiodic if it is not periodic.

Note that a sufficient condition for an irreducible DTMC (cf. Definition 1) to be
aperiodic is that there exists at least one state with a self loop.

Theorem 1 [59] In an irreducible and aperiodic finite-state DTMC:2

• the limiting distribution
−−→
po,∗ does exist

• −−→
po,∗ is independent of the initial distribution

−→
po

• −−→
po,∗ is the unique steady-state distribution

In order to determine the way of computing the steady-state probability of the
DTMC let us note that, according to Equation (1.5), −→p is the left eigenvector of P
that corresponds to the unit eigenvalue. As P is a stochastic matrix, the unit eigenvalue
always exists, and no other eigenvalue exceeds it in modulus. Therefore, the steady-
state probability can be computed as the dominant left eigenvector of the matrix P.
This computation can be done using the Power method described below.

Power method

This is a well-known numerical technique [131] for computing the dominant eigenvalue
and its eigenvectors. In case of a stochastic matrix P, it amounts to the following

iterative procedure with m ≥ 1 and
−−−→
po (0) =

−→
po being an initial vector:

−−−−→
po (m) =

−−−−−−→
po (m−1) · P (1.6)

For an aperiodic P, the convergence is guaranteed, if in addition P is irreducible then

the result does not depend on
−→
po. In the latter case there is only one eigenvector that

corresponds to the unit eigenvalue (one steady-state distribution).
As any other iterative method, the Power method is expected to give results with

some predefined error ε > 0. According to [131], the number K of iterations required
to satisfy the error bound ε can be approximated by:

K =
log2 ε

log2 |λ2|
2Note that a finite-state DTMC is always positive recurrent [44].

i

i

i

i

i

i

i

i

1.1. MARKOV CHAINS 7

where λ2 is the sub-dominant eigenvalue of P. In practice, however, λ2 is difficult to
compute and other convergence tests are used [131], such as:

1. An absolute-convergence test:
∥∥∥
−−−→
po (i) −−−−−−−→

po (i+M)
∥∥∥

v
< ε

2. A relative-convergence test: maxj∈N[1,N]

(|po
j (i+M)−po

j (i)|
|po

j (i+M)|

)
< ε

In general the parameter M > 0 here is a function of the convergence rate and the
iteration index i, but for simplicity M can be taken constant. Unfortunately, none of
these convergence tests can guarantee the desired error bound because both of them
are just the necessary conditions of convergence. Stewart [131] therefore suggests to
envisage a battery of such convergence tests3 all of which must be satisfied before the
Power method result is accepted as being sufficiently accurate.

Steady-state detection

Notice that for an initial distribution
−→
po, the limiting state-probability

−−→
po,∗ of the

DTMC is computed as a limit of the transient-probability vector
−−−−→
po (m), that is recur-

sively defined by Equation (1.3). Moreover, the Power method that allows to compute−−→
po,∗, see Equation (1.6), is nothing more than an iterative procedure for computing
the limit (1.4) with the provided convergence tests aimed at detecting the limiting
behavior.

Based on these observations, as it is suggested in [97], an optimization called steady-

state detection can be applied when computing transient probabilities
−−−−→
po (m) for large

values of m. In essence, the idea of steady-state detection is that when computing−−−−→
po (m) we can stop iterating if the limiting probability is reached, i. e.,

−−−−→
po (m) =

−−→
po,∗.

Since the probability distribution
−−→
po,∗ is typically unknown, the approach boils down to

applying the convergence tests of the Power method for detecting the limiting behavior
at iteration m, provided the error bound ε is respected.

1.1.2 Continuous-time Markov chains

Below we give a formal definition of the continuous-time Markov chain (CTMC) and
the embedded DTMC. Further we introduce the transient and stationary probabilities
of the CTMC and talk about their computation.

Definition 10 Let AP be a fixed and finite set of atomic propositions then a (labelled)

CTMC is a tuple (S, Q, L) where S is a finite set of states, L : S → 2AP is a labeling
function and Q : S × S → R is a generator matrix. The elements of Q = (qs,s′) are
such that for all s, s′ ∈ S and s 6= s′ we have qs,s′ ≥ 0, and for all s ∈ S we have
qs,s = −∑s′∈S, s6=s′ qs,s′ .

The state-residence times of the CTMC are exponentially distributed. The value of
qs,s′ defines the rate of taking the transition from state s to s′, and thus the time spent
in state s is governed by the total exit rate |qs,s|. On leaving the state s, a discrete

3There are other necessary conditions of convergence that are easy to check.

i

i

i

i

i

i

i

i

8 CHAPTER 1. PRELIMINARIES

probabilistic choice takes place among the state successors, i. e., all s′ ∈ S for which
qs,s′ > 0. The probability to move from state s to its successor s′ is defined by the
embedded DTMC.

Definition 11 The embedded DTMC (S, P, L) of a CTMC (S, Q, L) is a discrete-
time Markov chain such that for any s, s′ ∈ S we have:

P (s, s′) =

qs,s′/|qs,s| if s 6= s′ and |qs,s| > 0
0 if s 6= s′ and |qs,s| = 0
0 if s = s′ and |qs,s| > 0
1 if s = s′ and |qs,s| = 0

It is easy to see that the embedded DTMC does not have states with self-loops
except for states s ∈ S such that |qs,s| = 0, i. e., the absorbing states.

Clearly, any CTMC can be represented as a tuple (S, P, E, L) where (S, P, L) is
the embedded DTMC and E : S → R≥0 is such that E (s) = |qs,s|, i. e., it provides
the state exit rates. Using this representation, the probability of leaving the state s
within t time units can be expressed as 1 − e−E(s)·t, and the probability of taking the
transition to state s′ within time t as P (s, s′) · (1 − e−E(s)·t).

A path through a CTMC is a sequence of states and sojourn times σ = s0 t0 s1 t1 . . .
with P (si, si+1) > 0 and ti ∈ R≥0 for all i. Let Path

C denote the set of all paths in the

CTMC, then for any σ ∈ Path
C and t ∈ R≥0 we define σ@t to be the state in σ occupied

at time t. Formally, if σ [i] is the (i + 1)th state on the path σ, then σ@t = σ [i] for the

smallest index i such that t ≤∑i
j=0 ti. Note that once again the probability space on

Path
C can be defined using the standard Borel-space construction; for details, see [8].

Transient probabilities

The transient probabilities of the CTMC are defined by the following differential equa-
tion:

d
−−−−→
πo,∗ (t)

dt
=

−−−−→
πo,∗ (t) · Q, (1.7)

where
−−−−→
πo,∗ (t) is a vector of state probabilities4 after a delay of t time-units. In other

words πo,∗
i (t) is the probability to be in state i after t time-units. Provided with the

initial distribution
−→
po, the solution of Equation (1.7) is:

−−−−→
πo,∗ (t) =

−→
po · eQ·t (1.8)

The value of
−−−−→
πo,∗ (t) can be computed using numerical techniques such as Jensen’s

method, also known as uniformization.

Jensen’s method (Uniformization) We first notice that for a real number q, called
the uniformization rate, such that q ≥ maxi∈S |qi,i| the generator matrix of the CTMC
can be represented as Q = q ·(P − I). Here P is a stochastic matrix, called uniformized
CTMC, and I is the identity matrix of cardinality |S|. Then, using the representation of

4The index “*” in Equation (1.7) is introduced for technical reasons.

i

i

i

i

i

i

i

i

1.1. MARKOV CHAINS 9

Q in Equation (1.8) and expanding the matrix exponent according to Taylor-McLaurin,
one obtains:

−−−−→
πo,∗ (t) =

∞∑

i=0

γi(t)·
−−−→
po (i) (1.9)

where γi(t) = e−q·t (q·t)i

i! is the Poisson density function and
−−−→
po (i) is given by Equa-

tion (1.3).

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 5 10 15 20 25 30 35 40 45

Poisson density function

γ
i(

t)

RǫLǫ

i

Figure 1.1: Poisson density function with q · t = 2 and Rǫ

The remarkable fact about Equation (1.9) comes from the particular shape of the
Poisson density function (cf. Figure 1.1). Notice that for a given error bound ε > 0,
the infinite sum can be truncated using the so-called left Lǫ and right Rǫ truncation
points chosen in such a way that:

Lǫ−1∑

i=0

γi(t) ≤
ε

2
, and

∞∑

i=Rǫ+1

γi(t) ≤
ε

2
.

The latter, since
∑∞

i=0 γi(t) = 1.0, implies that
∑Rǫ

i=Lǫ
γi(t) ≥ 1 − ε, allowing us to

compute an ε-approximation of
−−−−→
πo,∗ (t) as:

−−−→
πo (t) =

Rǫ∑

i=Lǫ

γi(t)·
−−−→
po (i).

In practice, the computation of Poisson probabilities and truncation points for the
approximation is typically done using the Fox-Glynn algorithm.

i

i

i

i

i

i

i

i

10 CHAPTER 1. PRELIMINARIES

The Fox-Glynn algorithm For a real-valued function f : N → R, the Fox-Glynn
algorithm [50] allows for the following approximation:

∞∑

i=0

γi(t)f(i) ≈ 1

W

Rǫ∑

i=Lǫ

wi(t)f(i),

where for all i ∈ N[Lǫ, Rǫ] and some constant α 6= 0 we have the weights wi(t) = αγi(t)

and the normalization weight W =
∑Rǫ

i=Lǫ
wi(t). Here wi(t) and W are used to prevent

underflows during numerical computations. The following theorem gives the error
bound for the approximation.

Proposition 2 [50] For real-valued function f , and a Poisson density function γi(t),

if
∑Rǫ

i=Lǫ
γi(t) ≥ 1 − ε

2 then the following holds:

∣∣∣∣∣

∞∑

i=0

γi(t)f(i) − 1

W

Rǫ∑

i=Lǫ

wi(t)f(i)

∣∣∣∣∣ ≤ ε · ‖f‖,

where ‖f‖ = supi∈N
|f(i)|.

More details on using the Fox-Glynn algorithm for computing
−−−−→
πo,∗ (t) can be found in

Chapter 3.

Stationary probabilities

The stationary (steady-state) probabilities for the CTMC are a solution of the following
system of linear equations:

−→p ·Q =
−→
0 , where

∑

i∈S

pi = 1. (1.10)

The solution of this equation can be found by transforming it into the unit eigenvalue
problem [130]: −→p ·P = −→p , where P is the uniformized CTMC. Importantly to notice, it
is well known [130] that if the uniformization rate q is chosen such that q > maxi∈S |qi,i|
then all eigenvalues of P, except the unit eigenvalue, are strictly less than unity in
modulus. The latter makes the embedded DTMC defined by P aperiodic and therefore
ensures the existence of at least one steady-state probability distribution −→p . Note that,
the solution −→p is unique only if P is also irreducible.

1.2 Model checking Markov chains

Model checking is a technique that allows to check whether a system, represented as a
model, satisfies its formal specification. The model is usually expressed as a directed
graph which consists of nodes, edges and a set of atomic propositions associated with
every node. The nodes correspond to system states, the edges represent possible tran-
sitions between the states, while the atomic propositions indicate the basic properties
that hold at every particular state. The specification language, used to express system
properties is typically some kind of temporal logic, e. g., Linear Time Logic (LTL) [114]

i

i

i

i

i

i

i

i

1.2. MODEL CHECKING MARKOV CHAINS 11

or Computation Tree Logic (CTL) [32]. With the system model and the specification in
place, the model-checking problem can be expressed as follows: given a temporal-logic
formula Ψ, a model M and the initial state s, decide if M, s |= Φ. Since the model is
typically clear from the context, further we omit M and simply write s |= Φ.

In this section we discuss model-checking of systems that can be modeled as Markov
chains. More specifically, we concentrate on model-checking techniques for discrete-
and continuous-time Markov chains, see Sections 1.2.1 and 1.2.2, and their reward
extensions, see Section 1.2.3. For DTMC and CTMC model checking we start with
descriptions of corresponding temporal logics and then concentrate on the formal se-
mantics and model-checking algorithms of their most interesting operators. We show
how these model-checking procedures can be reduced to graph analysis and computing
transient and stationary probabilities of Markov chains. Naturally, we pay more atten-
tion to the algorithms that are employed in the subsequent chapters of this dissertation
and less to the ones that are not. More detailed information on model checking Markov
chains can be found in Chapter 10 of the book “Principles of Model Checking” written
by Baier & Katoen [14].

1.2.1 Model checking discrete-time Markov chains

Branching-time model checking of DTMCs was first introduced by Hansson and Jons-
son in [56]. The approach allows for an automated verification of properties specified
using Probabilistic Computation Tree Logic (PCTL) on a DTMC D = (S, P, L) with
a set of atomic propositions AP. Below we introduce the PCTL syntax, semantics, and
briefly discuss some of the model-checking procedures.

Using state formulas Φ and path formulas φ, the syntax of PCTL formulas can be
inductively defined as follows:

Φ ::= true
∣∣∣ a

∣∣∣ Φ ∧ Φ
∣∣∣ ¬Φ

∣∣∣ L⊲⊳ b (Φ)
∣∣∣ P⊲⊳ b (φ)

φ ::= X Φ
∣∣∣ Φ U[0,k] Φ

∣∣∣ Φ U Φ.

Here, atomic proposition a ∈ AP, the probability bound b ∈ [0, 1], k ∈ N represents
discrete time and ⊲⊳∈ {<,≤, >,≥}. Note that path formulas cannot be used on their
own but only as part of a state formula. Also, every state formula Φ results in a set
of states Sat (Φ) = { s ∈ S | s |= Φ }, the states that satisfy Φ. Therefore, when it
is convenient, instead of a state formula we can use a set of states, e. g., we can write
L⊲⊳ b (G) for some G ⊆ S.

Now, let us give an informal semantics of the main PCTL operators. The long-run
operator L⊲⊳ b (Φ) asserts that the proportion of time spent in Φ-states in the long run
meets the constraint ⊲⊳ b. Note that this operator is not a part of the standard PCTL
and was originally introduced in [4]. The probability operator P⊲⊳ b (φ) asserts that the
probability measure of the paths satisfying φ meets the probability constraint ⊲⊳ b.
The next operator X Φ asserts that a one-step transition is made to a Φ state. The
time-bounded until operator Φ U[0,k] Ψ asserts that Ψ is satisfied at some (discrete)
time instant in the interval [0, k] and that at all preceding time instants Φ holds. The
unbounded-until operator Φ U Ψ is a variant of the time-bounded until where we take
k = ∞. In this thesis, along with the operators described above, we will also use the
following abbreviations: ♦[0,k]Ψ := true U[0,k] Ψ and ♦Ψ := true U Ψ.

i

i

i

i

i

i

i

i

12 CHAPTER 1. PRELIMINARIES

PCTL model checking is carried out in the same way as verifying CTL by recur-
sively computing the set Sat (Φ). Further we present model-checking procedures for
the time-bounded until, unbounded-until and long-run operators. These algorithms
are important as they are going to be referenced in the subsequent chapters of this
dissertation.

Time-bounded until operator. Following the informal semantics, we write that a
path σ ∈ Path

D satisfies Φ U[0,k] Ψ, i. e. σ |= Φ U[0,k] Ψ, iff σ[j] |= Ψ for some j ≤ k,
and σ[i] |= Φ for all i < j. Then, if Path

D(s) is a set of paths starting in state s,
we write that s |= P⊲⊳ b

(
Φ U[0,k] Ψ

)
iff the probability measure Prob

(
s, Φ U[0,k] Ψ

)
of

the set { σ ∈ Path
D(s) | σ |= Φ U[0,k] Ψ } satisfies ⊲⊳ b. A direct way to compute this

probability is to find the least solution of the following linear equation system:

Prob
(
s, Φ U[0,k] Ψ

)
=

1 if s ∈ S1∑
s′∈S

P (s, s′) · Prob
(
s′, Φ U[0,k−1] Ψ

)
if s ∈ S? ∧ k > 0

0 otherwise

where the sets S1 and S? are defined as follows:

S1 = { s | s |= Ψ }, S0 = { s | s |= ¬Φ ∧ ¬Ψ }, and S? = S \ (S1 ∪ S0). (1.11)

One can simplify this system by replacing S0 with

U0 = S0 ∪ { s ∈ S? | ¬∃σ ∈ Path
D(s) : σ |= Φ U Ψ }, (1.12)

which can be found using a simple graph analysis in time O(|S|+|P|).
Alternatively, if the states s 6∈ S? are made absorbing, Prob

(
s, Φ U[0,k] Ψ

)
can be

calculated using transient probabilities of the DTMC, cf. Section 1.1.1.

Definition 12 For a DTMC D = (S, P, L) and S′ ⊆ S, let D[S′] = (S, P [S′] , L)
be the DTMC obtained by making all states in S′ absorbing, i. e., P [S′] (s, s) = P (s, s′)
if s 6∈ S′ and otherwise P [S′] (s, s′) = 0 for s′ 6= s and P [S′] (s, s′) = 1 for s′ = s.

Let us consider the DTMC D[S \ S?], then Prob
(
s, Φ U[0,k] Ψ

)
can be computed

using the forward-reachability algorithm that employs transient probabilities of the
DTMC:

Prob
(
s, Φ U[0,k] Ψ

)
=
∑

s′∈S1

po
s′ (k) . (1.13)

Here
−−−→
po (k) is given by Equation (1.3) for which we should take

−→
po =

−−→
1{s}, i. e., the

initial-distribution vector for starting in state s.
When doing model checking, we typically need to compute Prob

(
s, Φ U[0,k] Ψ

)
for

all states s ∈ S. This can be done by employing the backward-reachability algorithm
given by the following equation:

−−→
p (k) = (P [S0 ∪ S1])

k · −→1S1
. (1.14)

Here
−→
1S1

is the characteristic (column) vector of S1 and Prob
(
s, Φ U[0,k] Ψ

)
is obtained

as the s’th component of
−−→
p (k). Note that the forward- and backward-reachability

algorithms have the same time complexity.

i

i

i

i

i

i

i

i

1.2. MODEL CHECKING MARKOV CHAINS 13

Unbounded-until operator. We write that a path σ ∈ Path
D satisfies Φ U Ψ, i. e.

σ |= Φ U Ψ, iff σ[j] |= Ψ for some j, and σ[i] |= Φ for all i < j. Then s |= P⊲⊳ b (Φ U Ψ)
iff the probability measure Prob (s, Φ U Ψ) of the set { σ ∈ Path

D(s) | σ |= Φ U Ψ }
satisfies ⊲⊳ b. It is easy to see that this probability can be computed using the same
linear equation system as we have for the time-bounded until operator if we take k = ∞.
In addition, one can simplify the equations by replacing S1 with

U1 = S1 ∪ { s ∈ S? | ∀σ ∈ Path
D(s) : σ |= Φ U Ψ }, (1.15)

that can be found via a simple graph analysis in time O(|S|+|P|).

Long-run operator. Recall, that the proportion of time the DTMC spends in every
state in the long run is defined by the steady-state distribution which is a solution of
Equation (1.5), cf. Section 1.1.1. This distribution is unique, does not depend on the
initial distribution, only if the DTMC is irreducible.

Keeping this in mind, the formal semantics of the long-run operator is given as
follows. We write s |= L⊲⊳ b (Φ) iff the steady-state probability Prob∞ (s, Φ) of being
in the Φ states when starting in state s meets the constraint ⊲⊳ b. Prob∞ (s, Φ) can
be computed using decomposition of the DTMC into its bottom strongly connected
components.

Definition 13 A strongly connected component (SCC) of a transition system is a
maximal set of mutually reachable states. A bottom strongly connected component
(BSCC) is an SCC from which no other SCC can be reached.

For a DTMC each of its BSCCs can be seen as an irreducible subchain for which a
unique steady-state distribution exists. Moreover, all states that do not belong to
any BSCC are transient and thus Prob∞ (s, Φ) is a combination of reachability and
steady-state probabilities.

For the DTMC let {Bi}i∈I be a set of its BSCCs with the set of indexes I. For
every BSCC Bi the steady-state distribution is computed by solving Equation (1.5).
This, for any si ∈ Bi, allows us to obtain Prob∞ (si, Sat (Φ) ∩ Bi), i. e., the steady-
state probability of being in the Φ states of BSCC Bi. Note that this probability is the
same for all si ∈ Bi. The BSCC reachability probabilities Prob (s, ♦Bi) are calculated
using the techniques discussed earlier. As a result we get:

Prob∞ (s, Φ) =
∑

i∈I

Prob (s, ♦Bi) · Prob∞ (si, Sat (Φ) ∩ Bi) .

1.2.2 Model checking continuous-time Markov chains

Model checking of CTMCs was first introduced by Aziz et al. in [5] and then refined
by Baier et. al. in [8]. The approach allows for an automated verification of properties
specified using Continuous Stochastic Logic (CSL) on a CTMC C = (S, Q, L) with
a set of atomic propositions AP. Below we introduce the CSL syntax, semantics, and
consider some of the model-checking procedures.

i

i

i

i

i

i

i

i

14 CHAPTER 1. PRELIMINARIES

Similar to how it was done for PCTL, the syntax of CSL formulas can be inductively
defined as follows:

Φ ::= true
∣∣∣ a

∣∣∣ Φ ∧ Φ
∣∣∣ ¬Φ

∣∣∣ S⊲⊳ b (Φ)
∣∣∣ P⊲⊳ b (φ)

φ ::= X Φ
∣∣∣ X[t1, t2] Φ

∣∣∣ Φ U[t1,t2] Φ
∣∣∣ Φ U Φ.

Here we have an atomic proposition a ∈ AP, the probability bound b ∈ [0, 1], t1, t2 ∈
R≥0 (such that t1 ≤ t2) represent time and ⊲⊳∈ {<,≤, >,≥}.

CSL is a version of PCTL adapted for the continuous-time domain. The informal
semantics of the newly introduced operators is as follows. The steady-state operator
S⊲⊳ b (Φ) asserts that the steady-state probability of being in Φ states meets the bound-
ary condition ⊲⊳ b. The operator X[t1, t2] Φ is the timed variant of the next operator in
PCTL; it asserts that a transition is made to a Φ state at some time t ∈ [t1, t2]. The
time-interval until operator Φ U[t1,t2] Ψ is a generalization of the time-bounded until.
It asserts that Ψ is satisfied at some time t ∈ [t1, t2] and that at all preceding time
instants Φ holds.

Further we discuss model-checking procedures for the time-interval until, unboun-
ded-until and steady-state operators, because these algorithms are going to be refer-
enced in the subsequent chapters of this thesis.

Time-interval until operator We write s |= P⊲⊳ b

(
Φ U[t1,t2] Ψ

)
iff the probabil-

ity measure Prob
(
s, Φ U[t1,t2] Ψ

)
of the set of timed paths { σ ∈ Path

C(s) | σ |=
Φ U[t1,t2] Ψ } satisfies the constraint ⊲⊳ b. For a path σ ∈ Path

C we write σ |=
Φ U[t1,t2] Ψ iff there exists t ∈ [t1, t2] such that σ@t ∈ Sat (Ψ) and for all t′ < t we
have σ@t′ ∈ Sat (Φ).

Like for the time-bounded until of PCTL, see Section 1.2.1, the model-checking
procedure for the time-interval until of CSL can be reduced to transient analysis, see
Section 1.1.2. As before, we will use the sets S?, S0, S1 and U0 defined on page 12.

Definition 14 For a CTMC C = (S, Q, L) and S′ ⊆ S, let C[S′] = (S, Q [S′] , L)
be the CTMC obtained by making all states in S′ absorbing, i. e., for Q′ = Q [S′] we
have q′i,j = qi,j if i 6∈ S′ and 0 otherwise.

For simplicity, below we only consider the case of t1 = 0, i. e., the time-bounded
until formula Φ U[0,t] Ψ. Given the CTMC Q [S \ S?], the value of Prob

(
s, Φ U[0,t] Ψ

)

can be calculated in two ways. First, for any state s ∈ S, it can be obtained employing

Algorithm 1 (forward-reachability), where
−−→
1{s} is the row vector defining the initial

distribution for starting in state s. Second, the values of Prob
(
s, Φ U[0,t] Ψ

)
for all

s ∈ S can be computed at once [81] using Algorithm 2 (backward-reachability), where−→
1S1

is the characteristic (column) vector of S1. Note that both algorithms have the
same time complexity and that the matrix exponent can be computed numerically
using uniformization. Also, one can optimize computations by replacing S0 with U0.

Unbounded-until operator We write that a path σ ∈ Path
C satisfies Φ U Ψ, i. e.

σ |= Φ U Ψ, iff σ@t |= Ψ for some t, and σ@t′ |= Φ for all t′ < t. Then s |=
P⊲⊳ b (Φ U Ψ) iff the probability measure Prob (s, Φ U Ψ) of the set { σ ∈ Path

C(s) |

i

i

i

i

i

i

i

i

1.2. MODEL CHECKING MARKOV CHAINS 15

Algorithm 1 Computing Prob
(
s, Φ U[0,t] Ψ

)
in a “forward” manner

1: Determine Q [S \ S?]

2: Compute
−−−−→
πs,∗ (t) =

−−→
1{s} · eQ[S\S?]t

3: Return Prob
(
s, A U[0,t] G

)
=
∑

s′∈Sat(Ψ) πs,∗
s′ (t)

Algorithm 2 Computing Prob
(
s, Φ U[0,t] Ψ

)
in a “backward” manner

1: Determine Q [S \ S?]

2: Compute
−−−→
π∗ (t) = eQ[S\S?]t · −→1S1

3: Return ∀s ∈ S : Prob
(
s, A U[0,t] G

)
= π∗

s (t)

σ |= Φ U Ψ }, satisfies ⊲⊳ b. Clearly, Prob (s, Φ U Ψ) does not depend on time and
therefore is computed using the embedded DTMC following the algorithms given in
Section 1.2.1.

Steady-state operator We write s |= S⊲⊳ b (Φ) iff the steady-state probability to
be in a Φ-state, when starting in state s, i. e., Prob∞ (s, Φ) , satisfies the constraint
⊲⊳ b. The steady-state distribution of the CTMC is a solution of Equation 1.10, cf.
Section 1.1.2, and is unique if the CTMC is irreducible. Therefore, Prob∞ (s, Φ) is
computed on the uniformized CTMC using the model-checking procedure of the long-
run operator.

1.2.3 Model checking Markov reward models

As we know, the model-checking algorithms for DTMCs and CTMCs rely on well-
developed standard numerical algorithms. Recently, the further work in this area has
focussed on DTMCs and CTMCs decorated with rewards. The former are then called
discrete time Markov reward models (DMRMs) and the latter continuous-time Markov
reward models (CMRMs). The properties for these models can be specified using the
reward extensions of PCTL and CSL, namely PRCTL [4] and CSRL [11].

PRCTL extends PCTL with operators to reason about long-run average, and more
importantly, by operators that allow to specify constraints on (i) the expected reward
rate at a time instant, (ii) the long-run expected reward rate per time unit, (iii) the
cumulated reward rate at a time instant—all for a specified set of states—and (iv) the
cumulated reward over a time interval. PRCTL allows to specify non-trivial, though
interesting, constraints such as “the probability to reach one of the goal states (via
indicated allowed states) within n steps, while having earned an accumulated reward
that does not exceed r, is larger than 0.92”. Some example properties that can be
expressed in PRCTL are:

• P≥0.3

(
a U

[0,3]
[23,47] b

)
– the probability that a b-state can be reached via a-states

within 3 time units, while accumulating reward from 23 to 47, is at least 0.3.

• Y3
[3,5]a – the accumulated reward rate in a-states, expected within 3 hops, is from

3 to 5.

i

i

i

i

i

i

i

i

16 CHAPTER 1. PRELIMINARIES

DTMC

Synchronous Leader Election Protocol

Birth-Death process

Randomized Mutual exclusion

Crowds Protocol

CTMC

Tandem Queuing Network

Cyclic Server Polling System

Wireless Group Communication Protocol

Simple Peer-To-Peer Protocol

Workstation Cluster

Table 1.1: The case studies

CSRL extends CSL with time- and reward-interval next and until operators. This
allows one to express a rich spectrum of properties, for example:

• P≤0.5

(
X

[0,2]
[10,∞)c

)
– the probability that a transition to a c-state can be made at

time t ∈ [0, 2], with the reward accumulated until time t lying in (10,∞), is at
most 0.5.

• P≥0.3

(
a U

[0,3]
[23,47] b

)
– has the same meaning as in case of PRCTL, but deals with

continuous time.

Note that, as PCTL (CSL) is a sub-logic of PRCTL (CSRL), we are dealing with
orthogonal extensions: anything that could be specified in PCTL (CSL) can be specified
in PRCTL (CSRL), and more.

1.3 Case studies

In this section we present case studies that are used for our experiments throughout
the thesis. Most of the provided systems come from industry and all of them can be
modeled either as discrete- or continuous-time Markov chains, cf. Table 1.1. Here we
present the top-level descriptions of the case studies because all the necessary details
can be found in the referenced material. For our experiments we take the formal
specifications of the models, as can be consumed by the probabilistic model checkers
discussed in the next section, that are available for a free download from [115] and [105].
For compatibility reasons, the model parameters such as rates and probabilities are
kept intact. Therefore we present their values only if an additional insight into the
case study is required.

1.3.1 Synchronous Leader Election Protocol (SLE)

Synchronous Leader Election Protocol [76] (see also [94, 54, 48]) solves the following
problem: Given a synchronous ring of N processors design a protocol such that they

i

i

i

i

i

i

i

i

1.3. CASE STUDIES 17

0 1 . . .2 31-P(0,1)

P(0,1)

P(1,0)

P(1,2)

P(2,1)

P(2,3)

P(3,2)

P(3,...)

P(...,3)

P(m-1,m)

P(m,m-1)

m 1-P(m,m-1)

Figure 1.2: A birth-death process

will be able to elect a leader (a uniquely designated processor) by sending messages
around the unidirectional ring.

The protocol proceeds in rounds where each round begins with all processors in-
dependently and uniformly choosing a random number (an id) from the set [1 . . .K],
with some predefined K > 0. The processors then pass their ids around the ring. If
there is a unique id, then the processor with the maximum unique id is elected to be
the leader, otherwise a new round begins. It is assumed that the ring is synchronous,
i. e. there is a global clock. At every time slot a processor reads a message that was
sent at the previous time slot (if it exists), makes at most one state transition, and
then may send at most one message.

The typical properties verified for this case study are:

• P≤q

(
♦[0,(N+1)·3]elected

)
– the probability to elect a leader within N rounds is at

most q.

• P≥1 (♦elected) – eventually a leader is elected with probability one.

1.3.2 Birth-Death Process (BDP)

Birth-death processes [103, 80] are used in numerous fields, for instance to model the
growth of a population. States in a birth-death process are numbered by integers that
denote the current population size. In a birth-death process, the change in population
size can occur by at most one, an increase in size is denoted as ”birth” whereas a
decrease is denoted as ”death”. The birth-death processes are related to queuing theory,
for example we might state that the population represents ”customers in the queue at
the post office”. Birth would then represent the arrival of a new customer and death
the departure of a customer. An example of a finite birth-death process is depicted in
Figure 1.2.

The finite Markov chain is obtained by limiting the maximum population size M .
The probability of growth P(N,N+1) and death P(N,N−1) is made dependent on the
current population size N as follows:

Pi,j =

λ i = 0 ∧ j = 1 ∧ N = 0 , birth from the initial state
λ

λ+(N ·µ) j = i + 1 ∧ (0 < N < M) , birth
N ·µ

λ+(N ·µ) j = i − 1 ∧ (0 < N < M) , death

µ i = M , death from the N = M state

0 , otherwise

(1.16)

The constants λ and µ in Formula 1.16 are set to 0.8 and 0.001 respectively. In addition
we define the probabilities of staying in the states 0 and M as 1 − λ and 1 − µ.

i

i

i

i

i

i

i

i

18 CHAPTER 1. PRELIMINARIES

The typical properties verified for this case study are:

• P≥q

(
P≥p

(
♦[0,T](N = M)

)
U (N = X)

)
– the probability to reach the population

size X , if prior to that the probability of reaching the maximum population size
within T steps remains ≥ p, is at least q.

• P≥q (♦(N = X)) – the probability to reach the population size X is at least q.

1.3.3 Randomized Mutual Exclusion (RME)

This case study is based on Pnueli and Zuck’s solution [113] to the well-known mutual
exclusion problem. In this algorithm, N processes P1 . . . PN make random choices
based on coin tosses to ensure that they can enter their critical sections eventually,
although not simultaneously. The processes can coordinate their activities by use of
a common resource. The solution guarantees that at any time t there is at most one
process in the critical-section phase and that every process can eventually enter the
critical section. The model of the randomized mutual exclusion case study is rather
complex, e. g. every process has 16 various states, and therefore we do not present any
further details.

The typical property verified for this case study is:

• P≤q

(∧N
j 6=1 ¬enter j U enter1

)
– the probability that the process P1 is the first to

enter the critical section is at most q.

1.3.4 Crowds Protocol (CP)

This protocol was developed by Reiter and Rubin [119, 115] to provide users with a
mechanism for anonymous Web browsing. It uses random routing to hide each user’s
communications by directing their messages randomly within a group of similar users
(a crowd).

The model includes N honest and N/5 dishonest crowd members. The latter ones
are chosen at random and are able to observe the immediately preceding member on
the path. The path from a particular source to a particular destination is set up only
once, when the first message is sent. This happens as follows. The sender randomly
selects a crowd member and forwards the message to it. This member, with some
probability, sends the message directly to the destination or to the next selected router.
Routing paths are reconstructed once the crowd changes; the number of such new route
establishments is R, and is an important parameter that influences the state-space size.
The protocol is designed to provide anonymity for message senders, i. e., under a specific
parameter evaluation it is guaranteed that the real sender is indistinguishable from the
other crowd members.

The typical property verified for this case study is:

• P≤q (♦observe) – the probability of detecting the sender’s id is at most q.

1.3.5 Tandem Queuing Network (TQN)

This case study, taken from [66, 63, 145, 121, 140, 144], consists of two sequentially
composed queues, cf. Figure 1.3, each of capacity N . Messages arrive at the first

i

i

i

i

i

i

i

i

1.3. CASE STUDIES 19

. . .
λ

Ph=1 Ph=2
aμ1

(-a)μ1 1

μ2

routing time distribution

. . .
κ

Figure 1.3: Tandem Queuing Network of two sequentially composed queues.

queue and stay in the queue for some time, before getting routed to the second queue,
from where they eventually leave the system. The time between arrival of messages
at the first queue is exponentially distributed with rate λ = 4 · N . If the first queue
is not empty and the second queue not full, then messages are routed from the first
queue to the second queue. The routing-time distribution is a two-phase Coxian [36]
distribution with parameters µ1 = µ2 = 2 and a = 0.1. The processing time at the
second queue is exponentially distributed with rate κ = 4.

The typical properties verified for this case study are:

• P≤q

(
true U[0,T] full

)
– the probability that both queues become full within T

time units is at most q.

• P≤q (¬full1 U full2) – the probability that the second queue becomes full before
the first queue is at most q.

1.3.6 Cyclic Server Polling System (CPS)

The case study describes a polling system [73, 141, 140, 63, 121, 145, 144] consisting of
N equivalent stations and a server. Each station has a single-message buffer and the
stations are attended by a single server in a cyclic order. The server starts by polling
the first station. If this station has a message in its buffer (busy), the server starts
serving the station. Once the station has been served, or if there was no message in
the buffer (idle), the server start polling the next station. After polling all stations,
the server returns to polling the first station and thus beginning a new cycle. The
polling and service times are exponentially distributed with rates γ = 200 and µ = 1.
The arrival rate of messages at a station is equal for all stations and is exponentially
distributed with rate λ = µ

N .
The typical properties verified for this case study are:

• P≥q

(
true U[0,T] busy1

)
– the probability that station 1 becomes busy within T

time units is at least q.

• P≤q

(∧N
j 6=1 ¬servej U serve1

)
– the probability that the first station is served

before any other station is at most q.

• busy1 =⇒ P≥q

(
♦[0,T]poll1

)
– if the first station is busy then the probability

that it is served within T time units is at least q.

i

i

i

i

i

i

i

i

20 CHAPTER 1. PRELIMINARIES

1.3.7 Wireless Group Communication Protocol (WGC)

WGC [102, 21, 100] is a variant of the centralized medium access protocol of the IEEE
802.11 standard for wireless local area networks. This protocol support real-time group
communication between autonomous mobile stations and is centralized in the sense that
the medium access is controlled by a fixed node in the network, the Access Point (AP).

The protocol communications go as follows. The AP polls the wireless stations, and
on receipt of a poll message, stations may broadcast a message. Stations acknowledge
the receipt of a message such that the AP is able to detect whether or not all stations
have correctly received the broadcast message. In case of a detected loss, a retransmis-
sion by the originator takes place. It is assumed that the number of consecutive losses
of the same message is bounded by a fixed constant OD , the so-called omission degree.
This all refers to the transmission of time-critical messages; other messages are sent
in another phase of the protocol. The AP controls these phases which are of a fixed
duration.

In our study we consider 4 wireless stations and alter the state-space size by chang-
ing the omission degree OD . For simplicity we use the fading model of the system
discussed in [100].

The typical property verified for this case study is:

• P≤q

(
♦[0,24000]fail

)
– the probability that a message originated by the AP is not

received by at least one station within the duration of the time-critical phase
(t = 2.4 milliseconds) is at most q.

1.3.8 Simple Peer-To-Peer Protocol (P2P)

This case study describes a simple peer-to-peer protocol [90] based on BitTorrent. A
“torrent” is a small file which contains meta-data about the files to be shared and about
the host computer that coordinates the file distribution. The model contains a set of
clients trying to download a file that has been partitioned into K blocks. Initially,
there is one client that has already obtained all of the blocks and N additional clients
with no blocks. Each client can download a block (lasting an exponential delay) from
any of the others. The time needed for downloading the block decreases as the number
of computers possessing this block increases.

The typical property verified for this case study is:

• P≥q

(
♦[0,T]done

)
– the probability that all blocks are downloaded within T time

units is at least q.

1.3.9 Workstation Cluster (WC)

This case study considers a dependable cluster of workstations and is originally pro-
posed in [58], since then it has been used as a benchmark in various papers, e. g.,
[26, 143, 88, 116].

The cluster consists of two symmetric subsystems both consisting of N worksta-
tions. Inside a subsystem, the workstations are connected by means of switches that
are connected by a backbone. Each component of the system (workstation, switch and
backbone) is failure prone. There is a single repair unit that takes care of repairing

i

i

i

i

i

i

i

i

1.4. PROBABILISTIC MODEL CHECKING TOOLS 21

failed components. The failure and repair times are exponentially distributed. De-
pending on the number of operational and connected workstations, the system is said
to offer maximum or minimum quality of service.

The typical properties verified for this case study are:

• P≥q

(
♦[0,T]¬minimum

)
– the probability that a non-minimum service quality is

provided within T time units is at least q.

• S≥q (maximum) – the probability that the maximum service quality is provided
in the steady-state is at least q.

1.4 Probabilistic model checking tools

In this section we present several probabilistic model checkers, some of which sup-
port numerical model-checking techniques (e.g. PRISM, ETMCC) and some statistical
model checking (e.g. YMER, VESTA). These tools are used throughout the thesis for
comparison with the tool named MRMC that is introduced in Chapter 2.

1.4.1 PRISM

PRISM [88] stands for Probabilistic Symbolic Model Checker. The tool is developed
in the Computing Laboratory at the University of Oxford, UK. The user interface of
the tool is implemented in Java and the core algorithms are mostly developed in C++.
PRISM supports three kinds of models: DTMC, CTMC and MDP. System models
are described using the PRISM modeling language based on the Reactive Modules
formalism of Alur and Henzinger [3]. Properties can be specified using PCTL (for
DTMCs) or CSL (for CTMCs). There is also a limited support for the specification
and analysis of properties based on costs and rewards.

For state space representation, PRISM offers a choice between MTBDDs5, “sparse
matrices” (PRISMS) and “hybrid” data structures (PRISMH). It is expected that the
PRISMS engine is faster, whereas PRISMH should consume less memory. Regardless
of the engine, PRISM always generates an MTBDD to represent the Markov chain.
PRISMS then generates a sparse matrix out of the MTBDD, depending on the kind of
formula that is to be checked.

1.4.2 E ⊢MC2

ETMCC, also known as E ⊢MC2 [63] was developed by the Stochastic Modeling and
Verification group at the University of Erlangen–Nürnberg, Germany, and the Formal
Methods and Tools group at the University of Twente, the Netherlands. The develop-
ment of the tool stopped in 2001 with the version 1.4.2. E ⊢MC2 is written in Java
and uses an explicit (i. e. not symbolic) data structure for state space representation,
namely the sparse matrix. This model checker supports CTMC and DTMC models
but does not use its own modeling language. Instead, it accepts models in (a subset of)
the .tra-format as e.g. generated by the stochastic process algebra tool TIPPtool [61]
and Petri net tool DaNAMiCS [29]. The state labeling with atomic propositions has to

5PRISM uses a modified version of the CUDD package [127].

i

i

i

i

i

i

i

i

22 CHAPTER 1. PRELIMINARIES

be provided in a separate .lab file. It is also possible to use PRISM to generate these
files directly from the PRISM modeling language. E ⊢MC2 supports two temporal
logics: CSL and aCSL. Just as CSL, aCSL provides means to reason about CTMCs,
but unlike CSL, its basic constructors are actions instead of atomic state propositions;
for details see [64].

1.4.3 Ymer

Ymer [141] is a command-line tool, written in C and C++, for verifying transient prop-
erties of stochastic systems. It is developed at Carnegie Mellon University, Pittsburgh,
PA, United States. The tool supports generalized semi-Markov processes (GSMPs)
[138], a superset of CTMCs. The language used for model specification is a subset of
the PRISM language with several syntactic differences. Ymer implements statistical
model checking for a subset of CSL. The algorithms are based on discrete event simula-
tion [124] and sequential acceptance sampling [146], see also Part II of this dissertation.
Ymer also supports numerical techniques, but the numerical engine is adopted from
PRISM. The model checker offers a choice between either a simple or sequential accep-
tance sampling. There is also support for distributed acceptance sampling, meaning
multiple machines can be used to generate samples independently.

1.4.4 VESTA

VESTA [121] is a Java-based tool for statistical analysis of probabilistic systems. It is
developed at the University of Illinois at Urbana-Champaign, United States. It extends
the statistical methods proposed in [146] and is based on Monte-Carlo simulation of
the model and simple hypothesis testing [69]. Some modifications, such as support for
the unbounded-until operator, were made to the original algorithms of [122]. VESTA
supports two kinds of input models: DTMCs and CTMCs. The tool uses a Java-based
language for their specification. A model description consists of sequential statements
in combination with Java code. Each statement consists of a guard, rate and action.
The language offers no explicit parallel composition. In addition to the Java-based
language there is support for PMaude [1]. Verification properties can be specified
using PCTL, CSL or QuaTEx [1].

1.5 Conclusion

In this chapter we introduced the basic concepts of probabilistic model checking. We
started with presenting the two main formalisms used for modelling probabilistic sys-
tems, namely the discrete- and continuous-time Markov chain. Further, the tempo-
ral logics, such as PCTL and CSL were described, along with the most important
model-checking algorithms. After that, an overview of the real-life systems that can
be modeled as Markov chains was given. These systems are going to be used as case
studies throughout this dissertation. In the end, we discussed the set of most known
probabilistic model checkers, such as PRISM and Ymer. These tools implement model-
checking techniques for DTMC and CTMCs allowing for an automated verification of
PCTL and CSL properties.

i

i

i

i

i

i

i

i

1.5. CONCLUSION 23

In the next chapter we present a new model checker, named MRMC. After repre-
senting the main features of the tool we concentrate on its performance in comparison
with the other tools. We provide various tool-implementation metrics and discuss the
use of MRMC in various third-party projects.

i

i

i

i

i

i

i

i

24 CHAPTER 1. PRELIMINARIES

i

i

i

i

i

i

i

i

Chapter 2

Markov Reward Model
Checker

Nowadays, efficient algorithms for probabilistic model-checking of DTMCs, CTMCs
and Markov decision processes are supported by several tools such as E ⊢MC2 [63],
PRISM [68], GreatSPN [17], VESTA [122], Ymer [141], and the APNN Toolbox [25].
Although these model checkers are able to handle a large set of measures of interest,
the reward-based measures have received scant attention so far. Such measures are
available in model checking of Markov reward models (MRMs). The latter are the
underlying semantic model of various high-level performance modeling formalisms, such
as reward extensions of stochastic process algebras, stochastic reward nets, and so on.
For the recent advances in model checking of MRMs we refer to the PhD thesis of Lucia
Cloth [34].

The tool presented in this chapter, named MRMC, supports the verification of
MRMs, in particular DMRMs and CMRMs. The property-specification language for
DMRMs is PRCTL and for CMRMs it is CSRL. For more details on these logics and
the model-checking techniques we refer to Chapter 1.

MRMC is a command-line tool that has an easy input format and is realized in the
C programming language, which allows the tool to be small and fast due to compiler-
based optimizations and smart memory management within the implementation. Also,
MRMC uses simple but high-performance data structures, such as: a slightly modified
version of the well-known compressed-row, compressed-column representation of prob-
ability (rate) matrices, and bit vectors for representing sets of states. Since MRMC
v1.2.2 the tool supports all major platforms, namely Microsoft Windows, Linux and
Mac OS X. The tool is distributed under the GNU General Public License (GPL) [117]
and is available for free download at [105]. In this chapter, unless stated otherwise, we
will discuss MRMC v1.2.2.

The rest of the chapter is organized as follows. First, in Section 2.1 we introduce
MRMC by means of a simple example and provide a high-level tool description. Sec-
tion 2.2 is devoted to the implementation details, such as architectural solutions, data
structures, low level algorithms etc. Further, in Section 2.4 we present an efficiency
comparison between MRMC and several other probabilistic model checkers such as
PRISM and VESTA. The MRMC implementation analysis and metrics are provided

25

i

i

i

i

i

i

i

i

26 CHAPTER 2. MARKOV REWARD MODEL CHECKER

in Sections 2.5 and 2.6 that include but are not limited to performance profiling and
code complexity analysis. Section 2.7 describes the MRMC test suite and, among other
things, discusses the provided test coverage. The use of MRMC in third-party projects
is given in Section 2.8.

The results of this chapter are partially published as [84] and [78].

2.1 Functionality

In this section we provide an insight in the model-checking problems that can be solved
by MRMC, and the model-checking algorithms it implements to allow for this func-
tionality. We start with an example problem that requires computing a reward-based
measure. Then, we show how the informal problem description can be transformed into
the formal MRM model and the logical formula that has to be verified. We continue
this section by providing the list of temporal logics and model-checking algorithms that
are supported by MRMC. In addition, we describe some improvements of the standard
verification procedures that have been realized in MRMC.

Example 1 Consider a dice with only four wedges that have numbers 1, 2, 3 and
4 imprinted on them. Let the dice be biased in such a way that we get the before-
mentioned outcomes with probabilities 0.4, 0.3, 0.2 and 0.1 respectively. One can now
play a simple game where the game round consists of continuously tossing the dice until
winning, if the outcome is 4 and the accumulated outcome is from 5 to 50, or losing, if
the outcome is 1. A natural question that can rise while playing this game is: “Is the
probability to win this game, e. g. within 100 tosses, larger than 0.5?”

The answer the question posed in Example 1 can be given if the described game is
transformed into a DMRM model and the question is reformulated in terms of the
PRCTL logic.

Example 2 Let us consider Figure 2.1 that provides the formal DMRM model of the
game described in Example 1. The model consists of five states where state 1 represents
the moment at which the dice is tossed and states from 2 to 5 correspond to the dice
outcomes from 1 to 4. These outcomes are transformed into state rewards and placed
next to the states in the square braces. The loss and goal states are marked by labels
enclosed in the curly braces. The goal label corresponds to the outcome 4. Recall that
in order to win, by reaching the state 4, the accumulated outcome has to be within 5
and 50.

Considering the DMRM model in Figure 2.1, the question posed in Example 1 can be

formulated as the following PRCTL formula: P>0.5

(
¬loss U

[0,199]
[5,50] goal

)
. This property

asserts that the probability to reach the goal state, without visiting the loss state within
199 time steps, and the accumulated reward being from 5 to 50, is larger than 0.5.
Notice that we have the upper time bound 199 that in the model corresponds to 100 dice
tosses.

Example 2 provides a typical model-checking problem that can be solved using
MRMC. Moreover, the tool supports verification of four types of temporal logics,
namely: PCTL, CSL, PRCTL and CSRL. Further we outline the model-checking al-
gorithms implemented in MRMC logic wise, and then indicate the realized extensions
of these algorithms that are not bound to a particular kind of logic.

i

i

i

i

i

i

i

i

2.1. FUNCTIONALITY 27

1

3

2 5

4

0.2

1.0

1.0

0.1

0.4

1.0

0.3

1.0

{loss} {goal}

[4][1]

[2] [3]

Figure 2.1: The dice game: DMRM model

For PCTL the realized algo-
rithms are mostly discussed by Hans-
son and Jonsson in [56]. The excep-
tion is a long-run operator which is
handled similar to the steady-state
operator of CSL. The supported al-
gorithms for PRCTL have been de-
scribed by Andova et al. [4]. Model-
checking techniques for CSL are de-
rived from [8] and for its reward ex-
tension CSRL from [33] (see also [11,
57]). For the latter one we have im-
plemented two algorithms for time-
and reward- bounded until formu-
lae. One is based on discretiza-
tion [133] and another on uniformiza-
tion and path truncation [118]. The
algorithms for PRCTL and CSRL
support both state and impulse re-
wards. It is important to note that
the model-checking procedures inte-
grated in MRMC were complemented with the following extensions that are aimed at
improving the tool’s performance and accuracy:

Steady-state (long-run) operator of CSL (PCTL). For the operator S⊲⊳ b (Ψ)
the algorithmic improvement lies with searching only for BSCCs that can contain Ψ
states, as opposed to searching for all BSCCs. The modification that was done to
the model-checking algorithms is straightforward and therefore we do not explain it in
further details.

Unbounded-until operator of CSL (PCTL). For model checking P⊲⊳ b (Φ U Ψ),
we first exclude states, using graph reachability analysis, from which Ψ states are
always or never reachable. Then the model checking procedure for the remaining states
is carried out as usual. All techniques required for this improvement are described
in [31].

Time-bounded until operator of CSL. We have implemented a uniformization
procedure [8] with a precise on-the-fly steady-state detection which is discussed in
Chapter 3. Similar to unbounded-until operator, the technique of [31] is employed to
detect and remove states from which the Ψ states are never reached. Also we employ
ideas, described in [81], that allow to compute the reachability probabilities for all
initial states at once.

Bisimulation minimization. The bisimulation minimization algorithms have been
realized for PCTL, CSL, PRCTL and CSRL, in the latter two cases without impulse
rewards. For more details consider Chapter 4.

In the next section we discuss the MRMC implementation in more details.

i

i

i

i

i

i

i

i

28 CHAPTER 2. MARKOV REWARD MODEL CHECKER

2.2 Implementation details

Since all the main algorithms integrated in MRMC are referenced in the previous
section, in order to give a better insight into the implementation, below we concentrate
on its details such as the architecture, realized data structures and low-level algorithms.

Options analyzerMRMC Input−file reader

Runtime settings

C
o

m
m

an
d

−
p

ro
m

p
t in

terp
reter

B
isim

u
latio

n

en
g

in
e

m
in

im
izatio

n

CSL model checking

CSRL model checking

PCTL model checking

PRCTL model checking

Common model checking

.tra file

CTMC DTMC

.lab file

AP labeling

.rew/.rewi files

Rewards
Options

PRCTL

PCTL

CSRL

CSL

Commands

Yes/No State probabilities

N
u

m
erical en

g
in

es:
F

ox−
G

lynn,
G

auss−
S

eidel,
G

auss−
Jacobi

Internal−data storage:
Sparse matrices, etc.

Figure 2.2: Tool architecture of MRMC

A sketch of the MRMC tool architecture is provided in Figure 2.2. Considering this
figure, we present a brief textual description of the main MRMC components. Their
correspondence to the source files can be found in Table A.1 of Appendix A.2. Note
that in this section we do not discuss interactions between the MRMC components and
the tool usage. These are illustrated in Section 2.3 by means of several examples.

“Options analyzer” – is responsible for parsing the command-line options of MRMC.
It invokes reading of the input files and sets the run-time parameters of the
tool, such as the logic we use to specify properties and/or the use of formula-
dependent/independent lumping (see Chapter 4).

“Runtime settings” – stores the run-time settings of MRMC, for example the error
bounds, the maximum number of iterations for the numerical methods and the
result-output formats.

i

i

i

i

i

i

i

i

2.2. IMPLEMENTATION DETAILS 29

“Input-file reader” – is responsible for reading the .tra, .lab, .rew and .rewi files
that are used to specify the input MRM model. For more details on the input-file
formats we refer to Section 2.3.

“Internal data storage” – contains implementations of various data structures used in
MRMC, among which are a sparse matrix, a bit set, structures for storing state
labels, and splay trees used in bisimulation minimization algorithms.

“Command-prompt interpreter” – is based on Yacc and Lex [74] and responsible
for: (i) interpreting the MRMC shell commands (setting error bounds, desired
numerical methods etc.), and PRCTL (PCTL) or CSRL (CSL) properties, (ii)
controlling the bottom-up recursive ascend over the parse tree of the logical for-
mula, and (iii) printing out the model checking results. The details about syntax
and semantics of available commands can be found in [106].

“Common model checking” – contains a set of generally-used algorithms applied in
model checking, e.g. procedures for searching BSCCs, and encloses the algorithms
for model checking PRCTL (PCTL), CSRL (CSL).

“Bisimulation engine” – provides algorithms for lumping state spaces of input models,
which are labeled DTMCs, CTMCs and their reward extensions.

“Numerical engines” – contains implementations of numerical methods, such as Fox-
Glynn algorithm for computing Poisson probabilities, Gauss-Seidel and Gauss-
Jacobi iterative methods for solving systems of linear equations.

2.2.1 Data structures

Below we discuss and substantiate the choices of the main data structures used in
MRMC.

Sparse matrices Storing a Markov chain may be quite a challenge, since most real-
life models are represented by chains with millions of states and transitions. Fortu-
nately, most transition matrices that appear in probabilistic model checking have a
very sparse structure, i. e. contain a large number of zeroes. Therefore using sparse-
matrices, such as a compressed-row (compressed-column) representation etc. (see [112]
for more details), as an internal repository for probability (rate) matrices is advanta-
geous. These structures allow to avoid the storage of, and computation on, a large
number of zeros while keeping the manipulations with data relatively cheap.

For MRMC, as recommended in [131], we have chosen the compressed-row repre-
sentation because it assures a high efficiency of matrix-vector multiplications which
are at the core of numerical model checking. Also, similar data structures were im-
plemented in the (by the year 2004) fastest serial and parallel explicit Markov chain
solver developed by Alexander Bell, for more details we refer to [16].

In our implementation the sparse matrix is represented by a structure containing
a number of rows: nrows; the number of columns: ncols; an array that stores the
number of non-zero off-diagonal elements for each row: succ; an array of pointers to
the structure representing a matrix row: rows; and an array: pred, that contains the

i

i

i

i

i

i

i

i

30 CHAPTER 2. MARKOV REWARD MODEL CHECKER

nrows = 3

ncols = 3

succ 1 2 0

pred 1 1 1

rows

diag = 0.5

diag = 0.0

diag = 1.0

col

col

col

val

val

val

back set

back set

back set

1

0.5

1

0 2

0.25 0.75

0

1

NULL

NULL

Figure 2.3: An example of the sparse-matrix representation used in MRMC

number of predecessor states for every state in the transition matrix. Note that the
self loops are not taken into account by pred.

The row structure has several fields, namely the diagonal element: diag; an array of
non-zero off-diagonal values: val; an array of corresponding column indexes: col; and
an array: back set, that contains predecessors of the state corresponding to the given
row index. The back set array is used for the bisimulation-minimization procedure
and in the model-checking algorithms of PCTL and CSL.

Example 3 Consider the matrix P:

P =

0.50 0.50 0.00
0.25 0.00 0.75
0.00 0.00 1.00

Although it is not really sparse, we can still use it for the illustrative purposes and
explain how it is transformed into the compressed-row representation of MRMC. Note
that in this example the state, matrix and array indices start with 0.

Figure 2.3 shows the data structures that are allocated for matrix P in MRMC. The
matrix structure (on the left of the figure) has the number of columns and rows set to
3. Its succ array contains values 1, 2 and 0 because the zero row has only one non-zero
off-diagonal element 0.5, the first row has two elements 0.25 and 0.75, and the second
row has none. The pred array contains ones because the predecessor of state 0 is state
1, of state 1 is state 0, and of state 2 is state 1.

i

i

i

i

i

i

i

i

2.2. IMPLEMENTATION DETAILS 31

Now, let us take the zero row of the matrix P. The pointer to the structure rep-
resenting it is stored in the zero element of the array rows. The structure has the
following values assigned to its fields: the array col consists of only one element, i. e.
index 1, because the only non-zero off-diagonal element of the row is located in the
column 1. The value of this element is stored in the corresponding element of the array
val. The field diag is set to 0.5, since this is the matrix diagonal element located in
the zero row. The array back set contains the state 1, because state 0 has an incoming
transition from state 1.

An advantage of the compressed-row representation is that it gives an easy access
to the matrix rows. The latter is crucial for the efficiency of matrix-vector multiplica-
tions, which are at the heart of the numerical model checking. Storing rows separately
simplifies the procedure of making states absorbing. The fact that the matrix diagonal
elements are stored apart from the non-diagonal elements facilitates optimizations of
matrix transformations, such as computation of an embedded Markov chain.

There are many other different ways to store transition matrixes efficiently, among
them are MTBDDs [51, 7], hybrid approaches [89, 91, 111] and many others. MTB-
DDs are known for a very compact state-space representation on models that exhibit a
highly regular structure, but suffer from a non-ideal performance when used in model
checking. The hybrid approaches are a trade off between an efficient state-space rep-
resentation and a good performance in model-checking applications. In this respect,
sparse matrices, although potentially not as efficient in memory usage as MTBDDs,
allow for a good performance as is shown in Section 2.4.

Bit sets During model checking it is very often needed to manipulate sets of states.
For example, while model checking a nested formula, sub-formulas have to be treated
first, resulting in sets of states satisfying these formulas. Therefore a data structure,
capable of efficiently representing sets of states, has to be implemented.

In MRMC we have chosen to use a so-called bit set. The idea behind it is relatively
simple. Having a set of state indices to store, we allocate a bit vector, where bits
with indices corresponding to our states, are set to one, and all other are set to zero.
Operations on such bit sets are simple. For instance, the computation of the comple-
ment of a set amounts to applying an exclusive or operation to the given bit vector
with the vector of the same size, filled with ones. We illustrate the bit-set structure
implemented in MRMC with the following example.

Example 4 Let S = {2, 5, 9, 31, 62}. In MRMC it is represented as a bit vector built of
32-bit sub-blocks, see Figure 2.4. Operations with this vector are simple and efficient,
e.g. checking for the state 62 being in the set S amounts to accessing the sub-block
number 1 = floor(62/32) and testing its bit number 30 = mod(62, 32) for having been
set to one. Note that in this example the state and array indices start with 0, the
function floor(.) returns the integer part of the real value, and the function mod(., .)
returns the remainder after dividing the first argument by the second one.

Splay trees A splay tree is a self-balancing binary search tree with the additional
unusual property that recently accessed elements are quick to access again. Splay
trees are used in our implementation of the bisimulation minimization algorithms,

i

i

i

i

i

i

i

i

32 CHAPTER 2. MARKOV REWARD MODEL CHECKER

0 1 1 10 0 0 0 0 0
0 1 2 3 4 5 6 7 8 109

10 0 0
27 28 29 30 31

0

2 5 9 31 62

32

1
313029

00
0 1 2

32

Figure 2.4: An example of the bit-set structure used in MRMC

for partitioning the state-space, to achieve a low time complexity [126]. In [40] it is
suggested that using red-black trees, may be even more efficient. Our experiments with
the red-black trees have shown that in general it is not the case. The latter is due to
the much more complex implementation of the data structure and operations on it.
Therefore, in MRMC we use an efficient implementation of splay trees developed by
Daniel Sleator [125].

2.2.2 Basic algorithms

Although originated for other purposes, algorithms for carrying out graph analysis,
solving linear equation systems and computing Poisson probabilities are heavily in-
volved in the standard procedures of probabilistic model checking (cf. Chapter 1).
MRMC implements several of such low-level algorithms and below we present the list
of these algorithms along with the modifications we have done to them.

Searching for BSCCs. For model checking of the steady-state (long-run) properties
of CSL (PCTL), it is essential to know the BSCCs of the considered Markov chain.
To that purpose we have employed the Tarjan’s algorithm [132] that looks for the
maximum strongly connected components, and aimed it specifically at searching for
BSCCs1.

Gauss-Seidel and Gauss-Jacobi. These are well-known iterative methods used
for solving systems of linear equations [131]. In MRMC they are utilized when model
checking steady-state (long-run) as well as unbounded-until properties.

Fox-Glynn. The Fox-Glynn algorithm [50] is typically used for computing Poisson
probabilities that arise when doing uniformization for time-bounded and time-interval
until operators of CSL logic. We employ the method as explained in the original paper
of Fox and Glynn, but apply improved error bounds. For more details see Chapter 3
of this thesis.

2.3 Tool usage

In this section we explaining the MRMC tool usage by discussing its inputs, outputs
and presenting the experimental runs. We start with the list of tool input files and

1The modification that we have done to the original algorithm is fairly simple and therefore we do
not discuss it in more details.

i

i

i

i

i

i

i

i

2.3. TOOL USAGE 33

options, and then proceed with several examples. The latter are based on Example 2
and show how the formal DMRM model can be transformed into the MRMC input-file
formats, how the tool can be started in the PRCTL mode, and how the verification
of the PRCTL property can be done. In our examples we also reference the MRMC
architecture, see Figure 2.2, in order to indicate the ways the main tool components
interact with each other.

MRMC is a command line tool that provides a shell-like environment (a command
prompt) where a user can specify the tool run-time options and the properties that have
to be verified. On the start up, MRMC accepts several command-line options, e. g.,
that specify the logic (such as CSL or PRCTL), and expects four input files: a .tra-file
describing the probability or rate matrix, a .lab-file indicating the state labeling with
atomic propositions, a .rew-file specifying the state-reward structure, and a .rewi-file
specifying the impulse-reward structure. For all supported logics the .tra and .lab

files are compulsory, whereas .rew and .rewi files are used only for specifying MRMs.
For more details on the command-line options and input files we refer to [106]. The
following example illustrates the input-file formats of MRMC.

Example 5 Let us consider the DMRM model of Example 2. This model can be seen
as a superposition of three parts: (i) the DTMC given by state-transitions and corre-
sponding distributions, (ii) the labeling function that maps sets of labels to the DTMC
states, and (iii) the state-reward function that maps reward values to the DTMC states.
In order to be used with MRMC, all these three parts have to be transformed into the
MRMC input files. Such a translation is given in Table 2.1.

The game.tra file contains an intuitive text-based representation of the DTMC, i.e.
its state transitions and corresponding probabilities. The game.lab file contains label
declarations and maps sets of labels to the states of DTMC. Similarly the game.rew file
contains mapping of the state rewards to the model states.

Once the formal system model is translated into the MRMC input files it can be
consumed by the tool as it is explained in the following example.

game.tra game.lab game.rew

STATES 5 #DECLARATION 2 1
TRANSITIONS 8 loss goal 3 2
1 2 0.4 #END 4 3
1 3 0.3 2 loss 5 4
1 4 0.2 5 goal
1 5 0.1
2 1 1.0
3 1 1.0
4 1 1.0
5 1 1.0

Table 2.1: The dice game: MRMC input files

Example 6 In order to start MRMC with the input files given in Example 5 the fol-
lowing command should be executed in a shell environment such as csh, bash on Linux
(Mac OS X), or dos on Microsoft Windows:

i

i

i

i

i

i

i

i

34 CHAPTER 2. MARKOV REWARD MODEL CHECKER

MRMC/bin> mrmc prctl game.tra game.lab game.rewi

When executed, this command starts MRMC by triggering several of its components,
see Figure 2.2. First “Options analyzer” parses the command-line arguments, setting
up the PRCTL logic as the current one in the “Runtime settings” component and
invoking “Input-file reader” for processing the files game.tra, game.lab and game.rewi.
At this stage “Internal-data storage” provides necessary data structures for storing the
probability matrix, labeling and state rewards, which then become accessible through
“Runtime settings”. Once MRMC is started it produces the following output:

--

| Markov Reward Model Checker |

| MRMC version 1.2.2 |

| Copyright (C) The University of Twente, 2004-2007. |

| Copyright (C) RWTH-Aachen, 2006-2007. |

| Authors: |

| Joost-Pieter Katoen (since 2004), Ivan S Zapreev (since 2004), |

| Christina Jansen (since 2007), Tim Kemna (2005-2006), |

| Maneesh Khattri (2004-2005) |

| MRMC is distributed under the GPL conditions |

| (GPL stands for GNU General Public License) |

| The product comes with ABSOLUTELY NO WARRANTY. |

| This is a free software, and you are welcome to redistribute it. |

--

Logic = PRCTL

Loading the ’game.tra’ file, please wait.

States=5, Transitions=8

Loading the ’game.lab’ file, please wait.

Loading the ’game.rew’ file, please wait.

The Occupied Space is 992 Bytes.

Type ’help’ to get help.

>>

where, first the MRMC logo is printed, then some general information about the ac-
cepted model and finally the MRMC shell invitation sign >>. After that the tool is up
and running, ready to accept user commands.

When MRMC is started, the user gets access to the tools command prompt where
(s)he can specify the tool run-time options, such as a use of certain algorithms, and
the properties that have to be verified. For every verification problem the tool outputs a
set of states that satisfy the given property and, if applicable, the list of probabilities.
Note that the complete list of MRMC command-line options and command-prompt
commands can be found in the tool documentation [106].

Example 7 Extending Example 6, we can answer to the model checking problem of
Example 1, by executing the following command in the MRMC command prompt:

>>P{>0.5}[!loss U[0,199][5,50] goal]

$RESULT: (0.0647999, 0.0000000, 0.0959998, 0.1199998, 0.1199997)

$STATE: { }

The Total Elapsed Model-Checking Time is 45 milli sec(s).

>>

i

i

i

i

i

i

i

i

2.4. EXPERIMENTS AND COMPARISON 35

By doing this we invoke the “Command-prompt interpreter” component that processes
all commands of the MRMC shell. This component, using “Runtime settings” deter-
mines which model-checking engine is needed, in this case it is “PRCTL model check-
ing”, and then invokes it. As a result, we get two outputs: a probability vector $RESULT,
and a set of states $STATE. The former corresponds to the list of probabilities to satisfy

the formula ¬loss U
[0,199]
[5,50] goal when starting in the first, second, etc. states. The latter

one is the set of states in which the formula P>0.5

(
¬loss U

[0,199]
[5,50] goal

)
is satisfied.

Since, when playing the dice game, we always start in state 1, i. e. we first toss the
dice, from the vector $RESULT we can see that the probability to win the game within
100 dice tosses is just 0.0647999 and thus indeed 1 is not in the set $STATE.

At this point we have described the main functionality of MRMC, referenced its
model-checking algorithms, explained the choices for the internal data structures, and
provided the examples of the tool usage. It is time to compare MRMC with the
other state-of-the-art probabilistic model checkers. Since efficiency is one of the most
important aspects of probabilistic model checking, the tool performance is of an utmost
importance. Therefore, in the next section we experimentally compare performance of
MRMC and the model-checking tools such as PRISM, Ymer, and etc.

2.4 Experiments and comparison

This section provides a comparative experimental study of MRMC and a substan-
tial set of probabilistic model checkers, namely E ⊢MC2, PRISM (sparse and hybrid
mode), Ymer and VESTA, that are described in Section 1.4. We focus on fully prob-
abilistic models, that is, finite-state DTMCs and CTMCs, and consider the temporal
logics PCTL and CSL. The experiments are aimed at the verification time, i. e., the
required time to verify a formula on a Markov chain, as well as peak memory usage,
i. e., the maximal amount of memory needed during the verification. All experiments
were carried out on a standard PC, and care was taken that equivalent input models
are used. Since models, properties, testing environment, and tool settings are all pub-
licly available, all reported experiments are repeatable and verifiable. The number of
experiments carried out is substantial, and each experiment is repeated several times.
In total, about 15,000 verification runs have been considered. The results of this section
are published as [78], which presents a selection of the experiments from [110].

The versions and release dates of the considered tools are listed in Table 2.2. The
five representative case studies are taken from the literature on performance evaluation
and probabilistic model checking. There are three discrete-time and two continuous-
time case studies. For each case study, we let the tools calculate the probability of some
bounded and unbounded-until properties. In addition we included a nested property
(with multiple until operators) in a discrete-time case study. In the continuous-time
case studies, we also checked for steady-state properties, which is another important
property type available in CSL (besides until properties). Table 2.3 presents the list of
considered case studies (cf. Section 1.3), along with their minimal and maximal model
sizes.2

2Unfortunately we were not able to generate larger state spaces for the SLE case study due to an
error obtained from the CUDD package.

i

i

i

i

i

i

i

i

36 CHAPTER 2. MARKOV REWARD MODEL CHECKER

Tool name Version Release date

MRMC a 1.1.1b March 2006

PRISM a 2.1 September 2004

E ⊢MC2 1.4.2 2001

Ymer 3.0 February 2005

VESTA 2.0 September 2005

aThis was the most recent version when we started our research.

Table 2.2: Tool versions used in efficiency comparison

timing study min/max, param. # states # transitions

discrete

SLE min, N = 4, K = 2 55 70

max, N = 8, K = 4 458,847 524,382

BDP min, M = 100 101 202

max, M = 100,000 100,001 200,002

continuous

TQN min, N = 2 15 23

max, N = 1023 2,096,128 7,328,771

CPS min, N = 3 36 84

max, N = 18 7,077,888 69,599,232

Table 2.3: Minimal and maximal model sizes per case study

2.4.1 Experimental setup

Below we describe the details of our experiments measuring the verification time and
peak memory usage of the various tools. To give our conclusions a solid scientific basis,
the experiment design was guided by the following principles:

• Repeatability and Verifiability: Every one should be able to repeat and verify our
experiments; this is achieved by the fact that our models, properties, scripts and
tool settings are publicly available.

• Statistical Significance: This has been achieved by repeating experiments several
times and computing the standard deviation.

• Encapsulation: Our experiments should measure what we claim to measure (i. e.
model check times and memory usage), no other influences. This has been
achieved by carefully measuring the time and memory usage of the processes
(see below) and by using a dedicated machine, thus the effect of disturbing fac-
tors such as network traffic, background processes is avoided.

i

i

i

i

i

i

i

i

2.4. EXPERIMENTS AND COMPARISON 37

Moreover, we have considered the tools as black boxes. That is, we have executed the
tools, but not changed their source code3. Also, we chose the verification parameters
(e. g. the algorithm for solving matrix equations) to be the same across all tools. For
details on the models and measurements, we refer to [110].

Software and hardware settings. All experiments were performed on a standard
PC with an Intel R© Pentium R© 4 CPU 3.00 GHz processor and 2GB of RAM. The
operating system is SuSE Linux 9.1, because this is supported by all tools. Furthermore
we ensured that the verification parameters and numerical solution methods of the tools
match. For the numerical tools, e. g., the Jacobi method is used for solving systems of
linear equations and the convergence accuracy ǫ is set to the default value 10−6. For
the statistical tools, we bound the probability of error (i. e. the chance of false negatives
or positives) by α = β = 0.01, which is the default setting for these tools, and half
the width of the indifference region δ = 0.01. The former agrees with possible choices
of α = β from [145]. The choice of δ is somewhat arbitrary, and also taken from the
literature.

Timing. In (probabilistic) model checking, two time factors are of interest: the model
construction time, i. e. the time to build the internal representation from the input
model, and the model checking time, i. e. the time to verify the property on the internal
representation. We mainly focused on the bare model check time. One would often
construct the model only once and then use it to verify multiple properties. In our
comparison, we use the time as reported by the tools.

Memory usage. We measured the peak memory usage of the model checker, i. e.
the amount of memory that is required for the verification problem at hand. More
precisely, we recorded the virtual-memory size (RAM + swap) of the entire process
(which includes model construction). We did so by running a script in parallel to the
model checker that took a sample every 100 msec. Although this sampling method
is not perfect, it gives us the means to conduct uniform measurements on all tools,
and it provides a reasonable indication of the memory consumption of each tool. A
disadvantage is that this method does not work for very small experiments that are
too quick. Other methods, such as profiling tools, are less suitable as they e. g., require
tool modifications.

Data collection. All experiments and measurement procedures were automated us-
ing shell scripts. This enabled us to easily repeat experiments many times and collect
data in a uniform way. An experiment consists of verifying one property on one par-
ticular model using one of the model checkers. The tools are restarted before each
experiment; this prevents the interference of e. g., caching on the measurements. Each
experiment was repeated 20 times, except that experiments for which a single run took
more than 30 minutes were repeated only three times. From the collected data, we
calculated mean and standard deviation. The latter is determined using Student’s t
distribution, which takes the number of experiments into account. The maximal com-
pletion time for a single experiment was set to 24 hours, i. e., experiments that took

3A minor exception is E ⊢MC2, where we added command line support to facilitate scripting.

i

i

i

i

i

i

i

i

38 CHAPTER 2. MARKOV REWARD MODEL CHECKER

longer were aborted. The verification time of these experiments is indicated in the
results as ∞.

Model construction. The selected case studies were modeled using the model de-
scription language of each of the tools. For MRMC, E ⊢MC2 and PRISM the models
were readily available, viz., from the PRISM web page [115] or from the example models
included in the tool distribution. Although the tools use different modeling languages,
we require the models to be equivalent across all tools. Thanks to the export facility of
PRISM version 3.0 beta, models in the PRISM language can be exported to the input
format of E ⊢MC2 and MRMC. The Ymer modeling language is almost identical to
that of PRISM and only a few minor changes had to be made. The models for these
four tools can thus safely be assumed to behave the same. The TQN and CPS case
studies are provided in the standard distribution of the VESTA tool. Only for the
BDP case study, a re-modeling effort was needed. We were not able to evaluate the
SLE case study using VESTA due to parsing problems of the latter one.

We attempted to generate models as large as possible by varying the model pa-
rameters. In addition to the RAM size, two factors restrict the model size: the size
of the .tra files used by MRMC and E ⊢MC2 is limited to a maximum of 2 GB. In a
few cases, we could not generate (and verify) our model as PRISM crashed due to a
(known) problem of the CUDD package used for MTBDDs.

As MRMC and E ⊢MC2 do not support a built-in modeling language, their over-
head to generate a sparse matrix representation is low compared to the sparse matrix
generation by PRISM. This aspect should be considered when interpreting the experi-
mental results.

2.4.2 Experimental results and analysis

Figure 2.5: The legend

The experimental results are discussed per type of for-
mula, allowing us to compare phenomena across the
various case studies. The results are presented by his-
tograms where the x-axis indicates the model param-
eters that determine the state space size, and the y-
axis indicates the verification time (in seconds) or the
memory consumption (in KB). Note that the y-axis is
log-scale. The legend of the plots is given by Figure 2.5.

Almost sure reachability properties. We first
consider unbounded-until formulas with probability
bound ≥ 1. Figures 2.6 and 2.7 show the verification
time and memory usage for the SLE case study for var-
ious (N, K) pairs. (Recall that N is the number of nodes, and K the identity range.)
As PRISM checks qualitative properties in a symbolic manner regardless whether it
uses the sparse or hybrid engine, there is neither a difference in runtime nor in memory
consumption between PRISMS and PRISMH . On increasing model parameters, the
memory consumption of MRMC grows gradually (as expected) whereas for PRISMS

and PRISMH only a slight increase is observed. This is due to the fact that PRISM re-
quires a large base memory for the JVM, the CUDD package (around 40 MB), and the

i

i

i

i

i

i

i

i

2.4. EXPERIMENTS AND COMPARISON 39

Figure 2.6: SLE, model check time: P≥1 (♦elected)

Figure 2.7: SLE, peak memory: P≥1 (♦elected)

i

i

i

i

i

i

i

i

40 CHAPTER 2. MARKOV REWARD MODEL CHECKER

Figure 2.8: CPS, model check time: busy1 =⇒ P≥1 (♦poll1)

MTBDD it (always) generates. The MTBDD for this case study is not very compact,
as indicated by the following table:

(N, K) (4, 4) (4, 8) (4, 12) (4, 16) (8, 2) (8, 4)

MTBDD vertices 10K 1.6M 9M 27M 7K 10M
states 0.8K 12K 62K 0.2M 2K 0.5M

As a result, PRISM needs substantially more memory than MRMC and the verifi-
cation times differ up to several orders of magnitude. (For the smallest two problem
instantiations, the memory consumption for MRMC is unavailable as its verification
times are negligible.)

The SLE case study suggests that memory consumption for PRISMS and PRISMH

is highly influenced by the MTBDD size. This observation is also substantiated by the
CPS case study, for which the MTBDD sizes just increase slightly on a growth of the
state space size:

N 3 6 9 12 15 18

MTBDD vertices 112 367 765 1282 1942 2745
states 36 0.6K 7K 74K 0.7M 7M

Observe that the MTBDD is very compact here, e. g., the model of 7 million states
only requires 2745 MTBDD vertices, much less than in the SLE case study.

Some experimental results for a reachability property of the CPS case study are
summarized in Figures 2.4.2 and 2.4.2. In contrast to the previous study, PRISM needs
less memory than MRMC for large models due to the small MTBDD size. As before,
there is no difference between PRISMS and PRISMH . For small models, MRMC is

i

i

i

i

i

i

i

i

2.4. EXPERIMENTS AND COMPARISON 41

Figure 2.9: CPS, peak memory: busy1 =⇒ P≥1 (♦poll1)

faster and less memory intensive, but for N ≥ 15, it is outperformed by PRISMS . This
effect is to be expected to be more drastic for larger values of N as PRISMS is able to
check the CPS for N > 18 (roughly 26 M states) rather efficiently. As the file size of
the .tra file generated by PRISM for N > 18 exceeds 2 GB, we were unable to execute
MRMC on it. For N ≥ 15, E ⊢MC2 runs out of memory. The performance of E ⊢MC2

is worse than that of MRMC due to a less space-efficient sparse matrix representation,
and the effect of the JVM. VESTA is about two orders of magnitude slower although—
due to the use of Java—its memory usage is comparable to PRISMS . The inefficiency
of VESTA stems from the fact that it needs an excessive amount of sample paths to
decide properties with bounds of the form ≥ 1, as shown in the following table:

N 3 6 9 12 15 18

samples 34K 150K 395K 840K 1.6M 2.9M

Generally, statistical tools have difficulties to decide whether the probability of some
property meets a bound if the actual probability and the bound are close. VESTA
always gave the correct answer for these properties. For the BDP case study we expe-
rienced that for the property that almost surely eventually the population is maximal,
VESTA reports an incorrect answer if the stopping probability—the likelihood that a
sample path is stopped [122]—is not chosen appropriately. More precisely, if at some
point during the simulation the stopping probability (in our case 0.05) is larger than
that of reaching the state N=M (in fact, a rare event), the sample path ends and it is
concluded that N=M is not reached. Re-simulation using a smaller stopping proba-
bility (e. g. 0.01) yields the correct answer. Note that Ymer is not used here as it does
not support unbounded reachability properties.

i

i

i

i

i

i

i

i

42 CHAPTER 2. MARKOV REWARD MODEL CHECKER

Figure 2.10: CPS, model check time: busy1 =⇒ P≥0.5

(
♦[0,5]poll1

)

Figure 2.11: CPS, model check time: busy1 =⇒ P≥0.5

(
♦[0,80]poll1

)

i

i

i

i

i

i

i

i

2.4. EXPERIMENTS AND COMPARISON 43

Figure 2.12: CPS, peak memory: busy1 =⇒ P≥0.5

(
♦[0,t]poll1

)

Bounded-reachability properties. To show the effect of bounds, we consider a
time-bounded variant of the property discussed before and observe what happens upon
changing the time bound t. Figures 2.4.2 and 2.4.2 depict the verification times for the
extreme bounds that we investigated in the CPS: t=5 and t=80, whereas Figure 2.4.2
depicts the memory consumption for arbitrary t—the memory consumption does not
depend on t. The verification time required by MRMC is heavily influenced by t, e. g.,
for N=15 the verification time for t=20 is about four times longer than t=5. This is not
surprising, as the time complexity of the underlying algorithm is linear in t. From t=30
on, the verification time is almost constant, due to a built-in steady-state detection,
cf. Chapter 3. Besides, for t=80 and N=17, MRMC requires about 1700 seconds
(not depicted), and we obtained a timer overflow for larger instantiations, i. e., the
corresponding variable overflows. A similar behavior is obtained for E ⊢MC2 but it
runs out of memory rather quickly, as for simple reachability. PRISMH is more efficient
than PRISMS due to the compact MTBDD (see previous case). As for MRMC, the
verification time for PRISMH and PRISMS is linear in t, although this is less clear from
the pictures due to the initial overhead of the MTBDD construction. A careful analysis
of the log files reveals that the time per iteration is constant. Due to PRISM’s steady-
state detection, the verification time stops increasing around t=30. The verification
time for VESTA for t=5 is rather constant as the number of samples (approx. 300, 000)
is more or less the same for each N . For t=80 the number of samples slightly increases
(it raises from 0.2M for N=3 to about 1.1M for N=18). This explains the small
increase in run time in Figure 2.4.2. Unfortunately, VESTA gave wrong answers for
low time bounds often: for t = 5, only 32.5% of the answers were correct. Note
that the property has also been checked by Ymer, but as its run time is negligible—
it immediately establishes that the initial state does not satisfy the premise of the
implication—this is invisible in the figures. Ymer thus has an “excellent” performance,

i

i

i

i

i

i

i

i

44 CHAPTER 2. MARKOV REWARD MODEL CHECKER

Figure 2.13: TQN, model check time: P≤0.01

(
♦[0.5,2]full

)

but only checks the initial state whereas the other tools check all states. (VESTA also
only provides answers for the initial state, but is unable to find the trivial satisfaction.)

Figures 2.4.2 and 2.4.2 show the results for checking a time-bounded property on
the TQN case study. Ymer is for most cases much faster and smaller than all other
tools. (For N=2 the verification time is too short to measure the memory consumption
reliably.) As we have seen before, PRISMH is more memory-efficient than PRISMS ,
but the latter is faster. The memory usage of Ymer is less than VESTA, and for
both simulation tools independent of the model size (as expected). As in the other
case studies we see that due to the base memory overhead (JVM+CUDD) usage, the
PRISM memory consumption is less dependent on the model size than MRMC, and
E ⊢MC2 is only able to handle relatively small models (up to few hundred thousands
of states).

Figure 2.4.2 shows the timing for a bounded reachability property with both a pos-
itive lower and an upper bound (E ⊢MC2 and VESTA do not support these bounds.)
To check this formula, a model checker will calculate two reachability probabilities in
different Markov chains and combine these results. The results are similar to the above,
as expected: Ymer is, for most cases, the fastest tool; its runtime depends less on the
model size than for the other tools. MRMC is slightly faster than PRISMS , which is
slightly faster than PRISMH . The fact that Ymer is fast is also confirmed by checking
such bounded property on the CPS case study, e. g. on N=16, Ymer just needs 1.2 sec
whereas PRISMS and MRMC require about 1500 sec, and PRISMH about 3000 sec.

Steady-state properties. We only consider steady-state properties for CTMCs.
The long-run operator for PCTL [4] is only supported by MRMC, and is therefore
not used here. Ymer and VESTA do not support steady-state properties, basically as

i

i

i

i

i

i

i

i

2.4. EXPERIMENTS AND COMPARISON 45

Figure 2.14: TQN, model check time: P≤0.01

(
♦[0,2]full

)

Figure 2.15: TQN, peak memory: P≤0.01

(
♦[0,2]full

)

i

i

i

i

i

i

i

i

46 CHAPTER 2. MARKOV REWARD MODEL CHECKER

Figure 2.16: TQN, model check time: S>0.2 (P>0.1 (X snd))

Figure 2.17: TQN, peak memory: S>0.2 (P>0.1 (X snd))

i

i

i

i

i

i

i

i

2.4. EXPERIMENTS AND COMPARISON 47

Figure 2.18: BDP, model check time: P≥0.8

(
P≥0.9

(
♦[0,100](N = 70)

)
U (N = 50)

)

it is unclear on when to stop the sample path generation in their applied techniques.
Figures 2.4.2 and 2.4.2 show the runtime and peak memory for a steady-state property
in the TQN case study. The experiments show similar results as before. E ⊢MC2

is the slowest tool and cannot handle large models (where N > 100). For the smaller
models, the memory usage of PRISM is dominated by the overhead. For larger models,
PRISMS needs more memory than PRISMH but is slightly faster. All experiments with
steady-state formulas confirm our earlier observations: MRMC is faster and memory-
wise more efficient than PRISMS and PRISMH , but for larger models, PRISM uses
less memory than MRMC. The turn point, however, seems to occur at larger state
spaces than experienced for the reachability properties.

Nested properties. We also checked the behavior on nested quantitative reacha-
bility properties. Figures 2.4.2 and 2.4.2 show the results of checking such property
for the BDP case study. The tools check such nested formula in a bottom-up fashion,
i. e., first the set of states satisfying the sub-formula is determined. The results are
rather similar to the above findings. The MTBDD for the BDP case study is not very
compact as the transition rates depend on the population size N , and as a result, most
transition probabilities are distinct (resulting in many leaves in the MTBDD). As a
result, MRMC outperforms PRISMS and PRISMH . Note however, that considered
state spaces for this case study are relatively small which is favorable for MRMC. For
all model instantiations, VESTA did not terminate simulation within 24 hours. We
suggest as explanation that too many samples are required because the event N=70 is
rather rare.

i

i

i

i

i

i

i

i

48 CHAPTER 2. MARKOV REWARD MODEL CHECKER

Figure 2.19: BDP, peak memory: P≥0.8

(
P≥0.9

(
♦[0,100](N = 70)

)
U (N = 50)

)

2.4.3 Conclusion

We presented a performance comparison of five probabilistic model checkers. By en-
suring that our experiments are repeatable, verifiable, statistically significant and free
from external influences, our findings are based on a solid methodology.

From our experiments, we conclude that Ymer seems to be the fastest tool. Also,
its memory usage is remarkably constant, hardly varying with the model size. Unfor-
tunately, Ymer only supports bounded and interval until formulas. Also, as statistical
tool, Ymer may report the wrong answer, and has done so during our experiments (in
a few cases, as expected). In particular, Ymer outperforms the other statistical model
checker VESTA: VESTA’s memory consumption is also rather constant, but more in
the order of PRISM’s memory usage. However, its runtime varies a lot. For certain
nested properties we checked, VESTA did not terminate within 24 h, even on a model
with 100 states only.

As expected, PRISMS is usually faster than PRISMH at the cost of substantially
greater memory usage. E ⊢MC2 performs the worst in terms of memory, and fre-
quently was unable to check models that were easy for the other tools.

For models up to a few million states, MRMC mostly performs better than PRISMS

both in time (although sparse matrix generation takes negligible time in MRMC com-
pared to PRISM) and memory. This is mainly due to the overhead for MTBDD
generation in PRISM. On larger models, PRISMS and PRISMH perform better. This
effect is more apparent whenever the MTBDD representation is compact. As expected,
PRISMS is often faster than PRISMH , but uses more memory. These results are sum-
marized in Tables 2.4 and 2.5.

i

i

i

i

i

i

i

i

2.5. IMPLEMENTATION ANALYSIS 49

speed E ⊢MC2 MRMC PRISMS PRISMH Ymer VESTA

steady state − ++ + 0/+ a N/A N/A

bounded until − + b +/++ 0/+ a ++ +

unbounded until − + b +/++ +/++ a N/A −/0

nested − ++ + 0/+ a N/A c −− d

aThe time heavily depends on the MTBDD size.
bMRMC was faster in most cases, PRISMS on larger models.
cThe property contained operators not supported by Ymer.
dBased on one property, for which VESTA did not terminate.

Table 2.4: Speed performance comparison

Recommendations for MRMC Based on our experience, we can conclude that
the considered version of MRMC (1.1.1b) performs well, comparing to other numerical
model checking tools, such as E ⊢MC2 and PRISM. The performance of MRMC,
though, should be improved on larger models. This can be done in several ways: (1) by
applying state-space reduction techniques, such as probabilistic bisimulation discussed
in Chapter 4, (2) optimization of the implementation discussed in Section 2.5, and
(3) improvement of the model checking algorithms, such as on-the-fly steady-state
detection discussed in Chapter 3.

Comparison with the statistical model checking tools revealed that a statistical
engine could be a fine complement to the numerical computations. The theoretical
and experimental aspects of applying the discrete event simulations to probabilistic
model checking are covered in Chapters 6 and 7.

memory E ⊢MC2 MRMC PRISMS PRISMH Ymer VESTA

steady state − + a + +/++ a b N/A N/A

bounded until − + a + +/++ a b ++ + c

unbounded until − + a +/++ +/++ a b N/A 0/+ c

nested − + a + +/++ a b N/A N/A d

aMRMC used least memory in most cases. For larger models PRISMS was between MRMC and
PRISMH , and PRISMH was the best.

bThe MTBDD size varied much with the case study.
cFairly constant; inefficient for small models, efficient for large ones.
dBased on one property, for which VESTA did not terminate.

Table 2.5: Memory performance comparison

2.5 Implementation analysis

As it is mentioned in the previous section, MRMC, although rather fast and efficient,
still needs some adjustments to be more competitive among the other model-checking
tools. Therefore, to reveal the bottlenecks in our implementation, we focus on perfor-

i

i

i

i

i

i

i

i

50 CHAPTER 2. MARKOV REWARD MODEL CHECKER

mance profiling. Our analysis is based on the outputs provided by the tool gprof 4 that
was applied to MRMC on the CPS case study (CSL properties). We do not profile
the PCTL, PRCTL or CSRL model-checking procedures of MRMC because for PCTL
the model-checking algorithms are simpler than for CSL, and the implementation for
PRCTL and CSRL has not (yet) been optimized.

MRMC version The experiments listed below were performed on MRMC v1.2.1
(March 2006), as opposed to the experiments from Section 2.4 which were performed
using MRMC v1.1.1b.

gprof In order to use gprof we first compiled MRMC with an extra GNU CC option:
’-pg’. Then MRMC was run as usual on each of the tests, listed in the subsequent
subsections. After each run an output file “gmon.out” was generated, containing the
profiling data. For analyzing the gathered data the gprof was run, providing all the
necessary statistics. gprof can produce several different output styles, we considered
the “flat profile”, that shows the total amount of time MRMC spent executing each
function. For more details on the “flat profile” read Appendix A.1.

Case study To clarify our choice of the representative case-study we must note that
the steady-state and unbounded-reachability properties of CSL are checked in a similar
manner as the long-run and unbounded-reachability properties of PCTL. Alternatively
the time-bounded reachability properties of CSL are processed using more complex
algorithms than that of PCTL. Therefore we could profile MRMC on either TQN
or CPS case study. Among them we have selected CPS because for both case studies
model checking times of steady-state and unbounded-reachability properties behave the
same, but for time bounded-reachability problems there are more experiments showing
that MRMC performed worse than PRISM on CPS than of TQN [110]. The properties
used below, unless stated otherwise, are utilized and explained in Section 2.4.

For our experiments we considered the CPS model with N = 17. This is the largest
value of N for which MRMC uses less than 2.0Gb of RAM. It is important because the
machine we did experiments on has 2.0Gb RAM. Yet, the underlying model of CPS
for N = 17 is still large enough to show the decrease of MRMC performance, when
compared to PRISM.

Analysis In the following subsections we only consider three most time-consuming
functions related to the model-checking algorithms of each property5. The profile data
obtained with gprof is present in Appendix A.1.

2.5.1 Steady-state property

As in Section 2.4, we considered the property S<0.2 (busy1 ∧ ¬serve1), i. e., the steady-
state probability that station 1 is waiting for the server is less than 0.2.

4This tool is a part of the GCC, the GNU Compiler Collection [35].
5The former is determined by the % time column of the gprof results and the latter by our

knowledge of MRMC sources.

i

i

i

i

i

i

i

i

2.5. IMPLEMENTATION ANALYSIS 51

According to the obtained data the multiplyUrowByConstAndAddToLUx function
takes 31.42% of time. This function is part of the Gauss-Seidel iterative method im-
plementation and is responsible for multiplying a matrix row by a number and adding
it to the next iteration vector. A more efficient implementation of this function can
give a drastic improvement of model checking time.

Another function that is frequently called (about 70 million times) is get_bit_val.
It gives access to a bit set element (see Section 2.2.1) and is already quite efficient but
perhaps can be optimized further. As an alternative a different, and more efficient,
data structure could be employed for storing sets of states.

The set_mtx_val_ncolse function calls, although time consuming, are less inter-
esting. This function is invoked only for constructing the sparse matrix at the MRMC
start-up and is irrelevant to model checking of the steady-state property. Therefore the
third function we discuss is getRoot. It is used in the graph-traversal algorithm that
searches for BSCCs and maps the MC states to their root values, see Section 2.2.2.
At the moment, the implementation uses a simple array-based mapping. A more effi-
cient hash table may improve the performance. Making the function “inline” can also
improve the efficiency.

2.5.2 Reachability property

For model checking the property busy1 =⇒ P≥1.0 (♦poll1), again the functions
get_bit_val and set_mtx_val_ncolse show their importance. The first one takes
25.53% and the second 19.70% of the MRMC run time.

The next function is get_exist_until. It is used for transient analysis, see Sec-
tion 2.1, and allows for determining the states from which the goal states may be
reached via allowed states. The algorithm is based on a backward graph traversal [31]
that is rather efficient. The implementation, though, may be improved by providing
an easier sequential access to the bit-set elements.

The functions through isWithinLineDelimiter to scan_number are involved in
loading the model and therefore are uninteresting. The function get_always_until is
the last. As get_exist_until, it is widely used in transient analysis, and implements
an algorithm described in [31]. The idea behind it is: finding the set of states from which
the goal states are reached via allowed states with probability one. An improvement
can be done on the level of manipulating the sets of states and memory management.

2.5.3 Bounded-reachability properties

Let us consider properties busy1 =⇒ P≥0.5

(
♦[0,80]poll1

)
and P≥0.99

(
♦[40,80]serve1

)
,

i. e., the probability that station 1 will be served within the time bound [40, 80] is at
most 0.99.

Time-bounded reachability The function multiply_mtx_cer_MV is a serious bot-
tleneck, since MRMC spent over 97% of run time in it. This function is used for
multiplying a matrix by a vector where certain rows/vector elements are skipped, due
to the states being made absorbing. The operation is vital for uniformization, see Sec-
tion 2.1. A source code analysis revealed that it can be further optimized by at least
simplifying the access to the sparse matrix elements.

i

i

i

i

i

i

i

i

52 CHAPTER 2. MARKOV REWARD MODEL CHECKER

The function uniformization_plain is the next candidate for a refinement. It
implements the uniformization and is quite complex. The possible ways to improve its
performance are to use a more efficient algorithm for computing Poisson probabilities
(currently the Fox-Glynn algorithm is used) and/or to optimize the performance of
matrix-vector multiplication.

The functions set_mtx_val_ncolse, get_bit_val and get_exist_until were al-
ready mentioned before.

Time-interval reachability The results obtained for interval-reachability property
are very similar to the ones of the bounded-reachability property. The reason is that
in the former case the uniformization has to be performed several times [8]. As
before, functions multiply_mtx_cer_MV, uniformization_plain, get_bit_val and
get_exist_until are the most time consuming.

2.5.4 Summary

The profiling results can be summarized as follows. First, the sparse-matrix repre-
sentation should be further optimized with respect to numerical operations such as
matrix-vector multiplication and operations specific to the numerical methods, e. g.
Gauss-Seidel iterative method. Second, the bit-set structure, used to represent sets
of states, has to allow for a faster access to its elements and more efficient set oper-
ations, such as union, intersection and complementation. Third, faster algorithms for
computing Poisson probabilities and searching for BSCCs have to be utilized.

2.6 Implementation metrics

Implementation metrics, such as the number of source-code lines, lines of comments,
cyclomatic complexity and the development effort estimates, are widely used to assess
the quality and complexity of software as well as the implementation effort. In order to
give a glimpse of the amount of work needed to implement a probabilistic model checker,
we computed such metrics for MRMC v1.2.1 (January 2007) using the following tools:

• Understand C/C++: Version 1.4 (Build 402), evaluation version [75]

• SLOCCount : Version 2.26, released under GPL license [137]

• CCCC : Version 3.1.4, a Freeware product [96]

Understand C/C++ is a reverse engineering, documentation and metrics tool for
C and C++ source code. It offers code navigation using a detailed cross reference, a
syntax colorizing ”smart” editor, and a variety of graphical reverse engineering views.
Understand for C++ is an interactive development environment (IDE) designed to
help maintain and understand large amounts of legacy or newly created C and C++
source code.

Understand, applied to the MRMC sources, produces the statistics in Table 2.6.

i

i

i

i

i

i

i

i

2.6. IMPLEMENTATION METRICS 53

Files 56

Functions 364

Lines 17013

Lines blank 1503

Lines of code a 6738

Lines of comments b 8287

Lines of comment per line of code 1.23

aNumber of non-blank, non-comment lines of source code counted by the analyzer
bNumber of lines of comment identified by the analyzer

Table 2.6: The MRMC metrics produced by Understand C/C++

SLOCCount is a suite of programs for counting physical source lines of code (SLOC)
in potentially large software systems written in C, C++, Java, C# and many other
languages. Originally, SLOCCount was developed by David A. Wheeler to count SLOC
in a GNU/Linux distribution. SLOCCount, applied to the sources of MRMC, produces
statistics in Table 2.7. Note that SLOCCount gives a development effort estimate

Lines of codea

Language # Lines Percent

ANSI C 7210 94.32%

YACC 323 4.23%

LEX 111 1.45%

Total lines of code (SLOC) 7644 100%

Development effort estimate b 20.31 Person-Months

aTotals grouped by language

bUsing the basic COCOMO model [23, 20], Person-Months = 2.4 ·
“

SLOC
1000

”1.05

Table 2.7: The MRMC metrics produced by SLOCCount

which in fact is very close to the real effort spent on developing MRMC.

CCCC was developed as a testing ground for a number of ideas related to software
metrics in an MSc project being undertaken by Tim Littlefair, under the supervision
of Dr Thomas O’Neill at Edith Cowan University, Perth, Western Australia. CCCC,
applied to the MRMC sources, produces statistics in Table 2.8. Note that the value
for Lines of code per line of comment in Table 2.8 and the value for Lines of comment
per line of code in Table 2.6 agree, since 1

0.815 ≈ 1.23.

i

i

i

i

i

i

i

i

54 CHAPTER 2. MARKOV REWARD MODEL CHECKER

Lines of code 6640

Lines of comments 8146

McCabe’s cyclomatic complexity a 1399

Lines of code per line of comment 0.815

Cyclomatic Complexity per line of comment b 0.172

Lines of code rejected by parser 339

aThe number of linearly independent routes through a control flow graph of a program
bIndicates density of comments with respect to logical complexity of program

Table 2.8: The MRMC metrics produced by CCCC

The overall summary. The number of code lines reported by the considered tools
varies slightly. The commercial tool Understand reports it to be 6738 whereas CCCC
indicates it as 6640. The latter can be explained by the fact that CCCC can not
correctly parse all the code and reports the number of lines rejected by parser to be
339, see Table 2.8. SLOCCount estimates the number of code lines as 7644 which we
consider to be a better estimate since, unlike Understand and CCCC, it recognizes
more source files, including those for yacc and lex. As a result we take the number of
MRMC code lines to be around 7000. Both Understand and CCCC give close values
for Lines of comment per line of code. The value 1.23 shows that MRMC sources
are commented substantially. The Development Effort Estimate, given by SLOCCount
(approximately 1.69 Person-Years), is close to what was spent on MRMC development.
The Cyclomatic Complexity of MRMC, as reported by CCCC, is 1399. In the literature,
values that exceed 50 are considered to indicate very complex and potentially highly
unstable programs. Nevertheless, MRMC is stable and we think that it is a merit of
the test suite, allowing for a fully automated testing of the tool. Therefore, the next
section of this chapter is devoted to the MRMC test-suite and its metrics, such as the
number of source-code lines and the test coverage.

2.7 MRMC test suite

The automated test-suite for MRMC allows to perform internal, functional and perfor-
mance testing of the tool. The internal tests are targeted on testing the data structures,
such as used for storing labels, the sparse matrix representation, etc. The functional
tests assess the functionality of MRMC which includes its command-prompt parser, im-
plemented model-checking algorithms, etc. Last but not least, the performance tests
allow to evaluate the efficiency of implemented algorithms, such as probabilistic bisim-
ulation minimization or on-the-fly steady-state detection. In addition to that, various
memory-usage metrics of MRMC are collected. For more details on the test suite,
consider reading its documentation.

The vast variety of used test cases includes various well-known case studies, dis-
cussed in Section 1.3: WGC, P2P, WC, CPS, RME, CP, SLE.

The test suite is freely distributed and can be obtained from [105]. Installation of

i

i

i

i

i

i

i

i

2.7. MRMC TEST SUITE 55

the test suite amounts to unpacking it into the MRMC-distribution folder, which as
a result adds the MRMC/test/ directory. The test suite is intended to be used on a
Linux platform only and is not proven to work correctly under ”Windows + Cygwin”
or ”Mac OS X”.

2.7.1 The test-suite metrics

In order to estimate the effort spent on developing the test suite we have employed
SLOCCount, the tool mentioned in Section 2.6. SLOCCount produces the statistics
presented in Table 2.9. This statistics is incomplete but gives just a general idea,
because many of our configuration scripts and files are not supported by SLOCCount.
In addition, the total number of written lines (for most test-suite files), excluding data
files for the test cases, is estimated to be about 8500 6.

Lines of Code

Language # Lines Percent

sh 832 56.45%

ANSI C 432 29.31%

awk 210 14.25%

Total lines of code (SLOC) 1474 100%

Development effort estimate 3.61 Person-Months

Table 2.9: The test-suite metrics produced by SLOCCount

2.7.2 The test-suite coverage

In order to estimate the coverage, provided by the test suite, we have employed a
test coverage program gcov 7. Using it allowed us to find out how often and what
lines of MRMC source code are actually executed during a run of the test suite. To
use gcov, we first compiled MRMC with the special GNU CC options: ’-O0 -fprofile-
arcs -ftest-coverage’. Then the test suite was run in a regular fashion. As a result,
for each source file of MRMC two files .gcda and .gcno were generated, containing the
accumulated statistics. These files were analyzed with gcov and the summarized results
are presented in the Table 2.10. As in Figure 2.2, we have divided MRMC sources into
several logical components in order to simplify the representation. The coverage
results only indicate the percentage of the source-code lines that was executed during
the test runs. Therefore there is no information about the coverage of all alternative
branches in the control-flow graph of the program. Nevertheless, we consider the given
test coverage to be satisfying. For more details about the test coverage of MRMC see
Appendix A.2.

6Using the standard Linux commands: find and wc -l

7Is a part of the GCC, the GNU Compiler Collection [35].

i

i

i

i

i

i

i

i

56 CHAPTER 2. MARKOV REWARD MODEL CHECKER

MRMC component # Linesa Coverage

Command-prompt interpreterb 654 61.16%

Input-file reader 175 81.14%

Options analyzer 233 72.53%

Runtime Settings 223 87.89%

PCTL model checking 123 100.00%

PRCTL model checking 186 96.77%

CSL model checking 345 94.49%

CSRL model checking 391 90.28%

Common model checking 479 91.65%

Internal Data Storage 806 83.13%

Bisimulation engine 558 90.32%

Numerical engines 362 78.18%

Total coverage of MRMC 4535c 83.46%

aThe total number of code lines.
bWe give coverage for the actual parser files generated by Yacc and Lex: lex.yy.c, y.tab.c, plus the

source file parser to core.c.
cThe total number of source lines for MRMC, according to gcov is smaller than reported by other

tools (see Section 2.6). The reason is that gcov counts only the meaningful lines, for example it omits
lines that have only closing braces on them.

Table 2.10: The test-suite coverage, produced by gcov

2.8 MRMC and the third-party projects

In this section we present third-party projects that use MRMC and also model checking
tools that interface with it.

GreatSPN and MRMC GreatSPN v2.0 [99] is a software package being developed
by the Department information at the Università di Torino, Italy in cooperation with
the Dipartimento di Informatica at the Università del Piemonte Orientale, Alessandria,
Italy.

The package is used for modeling, validation, and performance evaluation of dis-
tributed systems using Generalized Stochastic Petri Nets and their colored extension:
Stochastic Well-formed Nets. It provides a friendly framework to experiment with
timed Petri net based modeling techniques, and implements efficient analysis algo-
rithms to allow its use on rather complex applications. GreatSPN uses MRMC as a
backend for CSL model checking [28].

i

i

i

i

i

i

i

i

2.8. MRMC AND THE THIRD-PARTY PROJECTS 57

Prism and MRMC PRISM [68] is a probabilistic model checker being developed
by the School of Computer Science at the University of Birmingham, United Kingdom.

The tool supports three kinds of models: DTMC, CTMC and MDP (Markov De-
cision Processes). System models are described using the PRISM modeling language
which is a high-level state-based description language, based on the Reactive Modules
formalism of Alur and Henzinger [3]. The PRISM property specification language in-
corporates PCTL and CSL logics, as well as extensions for quantitative specifications
and costs/rewards. PRISM (since version 3.0) is capable of exporting its models [107]
into the MRMC input-file formats.

Performance Evaluation Process Algebra (PEPA) Performance Evaluation
Process Algebra (PEPA) [67] is an algebraic process-oriented language for modeling
concurrent systems. The process algebra is being mainly developed in Laboratory for
Foundations of Computer Science, University of Edinburgh, United Kingdom.

Performance of a PEPA model can be evaluated by deriving and analyzing the un-
derlying CTMC. PEPA modelers are provided with the PEPA Workbench [135], an
Eclipse-platform [49] application for managing the models. One of the PEPA Work-
bench features is an Eclipse wizard for exporting PEPA models into the MRMC input-
file formats.

Heuristics-Guided Dependability Analysis The project is carried out at the
chair of Software Engineering at the Universität des Konstanz, Germany.

It is aimed at generating diagnostics information for stochastic models [2], also
known as failure traces or counterexamples. The main concern is with application
of heuristic-guided search algorithms, to efficiently determine diagnostic traces which
carry large amount of probability. Such traces are an essential tool for diagnostics and
debugging of stochastic models. In the course of the work on this topic, a prototype
tool called DiPro has been implemented and linked to PRISM. Among the other goals
of the project is an implementation of interfaces to MRMC.

Reachability analysis in continuous-time Markov decision processes The
project is carried out in the Dependable Systems & Software Group at the Universität
des Saarlandes, Germany.

One of the project objectives is to link an industrial state-of-the-art modeling tool
(STATEMATE) to academic state-of-the-art analysis algorithms [19]. STATEMATE
models are transformed into uniform continuous-time Markov decision processes (uCT-
MDPs) which are used for analyzing the timed-reachability properties [12] with the help
of the MRMC tool extension.

The tool chain (STATEMATE – extended MRMC) had been complete and was
applied to a set of well-known case studies [79], e.g. the European Train Control
System (ETCS) [19], fault-tolerant workstation cluster [58, 62], and mutual exclusion
problem [52]. Currently the timed-reachability algorithms for uCTMDPs are being
integrated into the new release of MRMC v1.3.

i

i

i

i

i

i

i

i

58 CHAPTER 2. MARKOV REWARD MODEL CHECKER

2.9 Conclusion

In this chapter we have presented the probabilistic model checker named MRMC that
is being developed at the Formal Methods and Tools group, University of Twente, The
Netherlands and Software Modeling and Verification group, RWTH-Aachen, Germany.

We first introduced the tool in Section 2.1 by means of several simple examples
and then in Section 2.2 discussed the tool internals, such as the implemented algo-
rithms, the architecture and the underlying data structures. This helped us to analyze
the results of comparative experimental study of MRMC and the probabilistic model
checkers E ⊢MC2, PRISM, YMER and VESTA provided in Section 2.4. The main
conclusion of this analysis was that MRMC v1.1.1b is highly competitive with other
tools, especially when applied to small and medium size models (up to several millions
states). Nevertheless, in order to analyze the possible bottlenecks of the implemen-
tation, in Section 2.5 we carried out the performance profiling of MRMC v1.2.1 (the
latest available version at the time of profiling) and gave detailed recommendations
for the tool improvements, which were partially realized in MRMC v1.2.2 released in
August 2007. To complete the overview of the tool and its development we presented
the various source-code metrics of MRMC in Section 2.6 and the MRMC test suite in
Section 2.7. Finally, in Section 2.8 we discussed the applications of MRMC in several
third-party projects aimed at: the validation and performance evaluation of Stochastic
Well-formed Nets, counter-examples generation, and model checking CTMDPs.

i

i

i

i

i

i

i

i

Chapter 3

On-The-Fly Steady-State
Detection

When performing transient analysis for a CTMC, see Section 1.1.2, it is common
practice—in particular in case of large time spans—to use a built-in steady-state detec-
tion technique [97, 145]. The underlying idea is to be able to detect whether the CTMC
has reached an equilibrium before the end of the (large) time bound. Whenever such
equilibrium is detected, the transient computation can be stopped thus saving expen-
sive computational steps. The criteria for detecting such equilibria when guaranteeing
a given overall inaccuracy are, however, not always clear and may lead to the detection
of premature equilibria. This may happen, for instance, when the probability mass in
the CTMC under consideration only changes slightly in a series of computational steps
due to a “slow” movement.

As checking time-bounded reachability properties of CSL reduces to transient anal-
ysis, cf. Section 1.2.2, on-the-fly steady-state detection can be exploited in probabilistic
model checking. Numerical probabilistic model checkers such as PRISM, E ⊢MC2, dis-
cussed in Section 1.4, and their variants for stochastic Petri nets (such as GreatSPN
[38] and the APNN Toolbox [25]) have adopted this technique for model checking CSL
as it is, without tailoring it to the specific nature of time-bounded reachability. Thus
they can not avoid detecting a premature stationarity, sometimes providing unreliable
model-checking results.

Further, we present a detailed analysis of the use of on-the-fly steady-state detection
in this setting. Since computing Poisson probabilities, an essential ingredient in CTMC
transient analysis, is typically done using the procedure suggested by B. L. Fox and P.
W. Glynn [50], we start by revisiting and slightly sharpening their results. Based on
this, we improve the known criteria to decide whether an equilibrium has been reached
for on-the-fly steady-state detection in case of CTMC transient analysis [97] and CSL
model checking [143, 145]. Furthermore, for the latter a simple procedure is proposed
to safely detect equilibria. This is done by exploiting the structure of the CTMC that
is obtained when reducing time-bounded reachability to transient analysis. Note that
this algorithm is correct in the sense that premature stationarity is never detected.

Experimental results complete the discussion and show the impact of our theoretical
achievements. By means of an artificial, though extremely simple CTMC, we show that

59

i

i

i

i

i

i

i

i

60 CHAPTER 3. ON-THE-FLY STEADY-STATE DETECTION

various existing probabilistic model checkers detect a premature equilibrium resulting
in incorrect verification results. We report similar observations for several case studies
discussed in Section 1.3, namely: the workstation cluster and the IEEE 802.11 group
communication protocol. The former one is an example that has established itself
as a benchmark problem for probabilistic model checking. Our results for the latter
one confirm the premature steady-state detection phenomenon reported in a recent
analysis of the protocol in [100]. These experiments clearly indicate the benefits of our
algorithm. Based on these observations, we firmly believe that the presented results
improve current probabilistic model-checking technology.

The remainder of this chapter is organized as follows: Section 3.1 provides an
introduction of the steady-state detection problem both in application to transient
analysis and model checking of CTMCs. Section 3.2 presents the slight refinement of
the Fox-Glynn error-bound. Sections 3.3 and 3.4 contain the main contribution of this
work; these sections present new criteria for detecting equilibria during time-bounded
reachability, and the algorithm to safely detect steady state. Section 3.5 reports on the
conducted experiments. The time-complexity and some results on empirical evaluation
of the suggested steady-state detection procedure are presented in Sections 3.6. The
conclusions are given in Section 3.7.

Most results provided in this chapter are published as [86] and [82].

3.1 Introduction

In this section we first recall several facts about computing the transient and time-
bounded reachability probabilities for a CTMC (S, Q, L), for more details consider
reading Sections 1.1.2 and 1.2.2. Then we discuss the known on-the-fly steady-state
detection techniques and their application to computing the before-mentioned proba-
bilities.

The vector of transient probabilities
−−−−→
πo,∗ (t) for the CTMC at time t, when given

the initial distribution
−−−→
po (0), is computed as:

−−−−→
πo,∗ (t) =

∞∑

i=0

γi(t)·
−−−→
po (i), (3.1)

where γi(t) is the Poisson density function, for all i ≥ 1 we have
−−−→
po (i) =

−−−−−→
po (i−1) · P,

and P is the uniformized CTMC.
As it is mentioned earlier, the time-bounded reachability problem of CSL logic can

be reduced to transient analysis. In case of local model checking (forward-reachability,
Algorithm 1), the analysis needs to be carried out for a single state s ∈ S only,
which corresponds to the computation of transient probability Prob

(
s, A U[0,t] G

)
=

∑
j∈G πo,∗

j (t), by employing Equation (3.1) with
−−−→
po (0) =

−−→
1{s}.

For global model checking (backward-reachability, Algorithm 2), the validity of a
logical property needs to be checked in every state and thus the probabilities must be
computed for all initial states. The latter can be done by computing the vector:

−−−→
π∗ (t) =

∞∑

i=0

γi(t)
−−→
p (i), (3.2)

i

i

i

i

i

i

i

i

3.1. INTRODUCTION 61

with
−−→
p (0) =

−→
1G , and

−−→
p (i) = P · −−−−→p (i−1) for all i ≥ 1. Then for all s ∈ S we have

Prob
(
s, A U[0,t] G

)
= π∗

s (t).
For both Equations (3.1) and (3.2) the infinite sum is normally computed using the

Fox-Glynn algorithm, cf. Section 1.1.2. Another important observation is that, because−−−→
po (i) and

−−→
p (i) are iteration-step vectors for the Power method, cf. Section 1.1.1,

the steady-state detection can be employed, allowing the increase of the computation
efficiency. In the sequel we discuss the known steady-state detection techniques in

application to computing probabilities
−−−−→
πo,∗ (t) and

−−−→
π∗ (t). We also point out the flaws

and limitations of these approaches.

3.1.1 Transient probabilities

Malhotra et. al. [97] present a numerical method, which takes into account steady-
state detection, for computing CTMC transient probabilities, see Equation (3.1), with
an overall error bound ε. For the sake of this dissertation, we state their result in the
following form:

Claim 1 [97] Let (S, P, L) be an aperiodic DTMC with initial distribution
−→
po and

steady-state distribution
−−→
po,∗. If for some K and δ > 0 it holds that ∀i ≥ K :∥∥∥−−→po,∗ − −−−→

po (i)
∥∥∥

v
≤ δ, where ‖.‖v is an arbitrary vector norm, then for

−−−−→
πo,∗ (t) =

∞∑

i=0

γi(t) ·
−−−→
po (i)

and for inaccuracy ε > 0:

−−−→
πo (t) =

−−−−→
po (K) , if K < Lǫ∑K

i=Lǫ
γi(t)

−−−→
po (i) +

−−−−→
po (K)

(
1 −∑K

i=0 γi(t)
)

, if Lǫ ≤ K ≤ Rǫ

∑Rǫ

i=Lǫ
γi(t)

−−−→
po (i) , if K > Rǫ

(3.3)

the following inequality holds:

∥∥∥
−−−−→
πo,∗ (t) −−−−→

πo (t)
∥∥∥

v
≤ 2δ +

ε

2

Here, Lǫ and Rǫ are computed using the Fox-Glynn algorithm (see below), such that∑Lǫ−1
i=0 γi(t) ≤ ε

2 , and
∑∞

i=Rǫ+1 γi(t) ≤ ε
2 .

Claim 1 can now be used to obtain a criterion for guaranteeing an overall inaccuracy
of ε > 0 for transient analysis with on-the-fly steady-state detection.

Corollary 3 Under the same conditions as Claim 1:

∥∥∥
−−→
po,∗ −−−−−→

po (K)
∥∥∥

v
≤ ε

4
implies

∥∥∥
−−−−→
πo,∗ (t) −−−−→

πo (t)
∥∥∥

v
≤ ε (3.4)

i

i

i

i

i

i

i

i

62 CHAPTER 3. ON-THE-FLY STEADY-STATE DETECTION

As
∥∥∥−−→po,∗ −−−−−→

po (K)
∥∥∥

v
is not known during computations (since

−−→
po,∗ is unknown, and

typically not computed a priori as this is computationally too expensive), [97] suggests
to use the absolute convergence test, i.e. to replace the premise in Equation (3.4) by:

∥∥∥
−−−→
po (i) −−−−−−−→

po (i+M)
∥∥∥

v
≤ ε

4
for M > 0

Accordingly,
−−−−→
po (K) with K = i+M is used as an approximation of the real steady-state

distribution. This approach thus boils down to comparing probability vectors that are
M iterations apart. Once these probability vectors are close enough, it is assumed that
the CTMC has reached an equilibrium. This approach, of course, has the drawback
that due to the use of an approximation of the stationary probability, an equilibrium
may be detected prematurely. A detailed analysis revealed that in deriving the above
result in [97], an important ingredient of the Fox-Glynn algorithm is not considered,
viz. the so-called weights (cf. Section 1.1.2). It will be shown in the remainder of
this chapter that weights play an important role to strengthen the premise of (3.4),
and thus to obtain a safer criterion to detect equilibria. Also, it should be noted that
Claim 1 does not hold for an arbitrary norm ‖.‖v. In fact, the additional condition
‖−→p ‖v ≤ 1 for any distribution vector −→p , is required.

3.1.2 Time-bounded reachability

The steady-state detection for transient analysis of CTMCs discussed in Section 3.1.1
is applicable to the forward computations, see Equation (3.2), in a straightforward way.
Steady-state detection for backward computations has been recently discussed in [145].
The approach by Younes et al. is based on the following result.

Claim 2 Let (S, P, L) be an aperiodic DTMC with Ind ⊆ S such that ∀j ∈ Ind :

P (j, j) = 1,
−−→
p (i) = Pi · −−→1Ind and steady-state vector

−→
p∗. If for some K and δ > 0 it

holds that ∀i ≥ K :
∥∥∥−→p∗ −

−−→
p (i)

∥∥∥
v
≤ δ, where ‖.‖v is an arbitrary vector norm, then for

−−−→
π∗ (t) =

∞∑

i=0

γi(t)
−−→
p (i)

and for inaccuracy ε > 0:

−−→
π (t) =

−−−→
p (K) , if K < Lǫ∑K

i=Lǫ
γi(t)

−−→
p (i) +

−−−→
p (K)

(
1 −∑K

i=Lǫ
γi(t)

)
, if Lǫ ≤ K ≤ Rǫ

∑Rǫ

i=Lǫ
γi(t)

−−→
p (i) , if K > Rǫ

(3.5)

the following inequality holds:

∥∥∥
−−−→
π∗ (t) −−−→

π (t)
∥∥∥

v
≤ 2δ +

ε

2

Here Lǫ, and Rǫ are computed using the Fox-Glynn algorithm, such that∑Lǫ−1
i=0 γi(t) ≤ ε

2 and
∑∞

i=Rǫ+1 γi(t) ≤ ε
2 .

i

i

i

i

i

i

i

i

3.2. FOX-GLYNN ERROR BOUND REVISITED 63

In [145], this result has led to the following practical check for steady-state:

∥∥∥
−→
p∗ −−−−→

p (K)
∥∥∥

v
≤ ε

8
implies ∀j ∈ S : −ε

4
≤ π∗

j (t) − πj (t) ≤ 3

4
ε (3.6)

As before, since
−→
p∗ is not known during computations, the absolute convergence

test is used instead. That is, the premise is replaced by
∥∥∥
−−→
p (i) −−−−−−→

p (i+M)
∥∥∥

v
≤ ε

8 . The

vector
−−−→
p (K) with K = i+M is thus used as an approximation of the steady-state

vector. Whereas for the forward analysis case, the convergence test bound equals ε
4

(cf. Equation (3.4)), for the backward analysis this is ε
8 (cf. Equation (3.6)). One may

question how safe (and tight) this criterion for equilibrium detection is. As these results
are based on [97], the drawbacks of this method are inherited. A detailed look at the
Equations (3.3) and (3.5) for the case Lǫ ≤ K ≤ Rǫ reveals that the second summation
for the backward case starts at i = Lǫ rather than i = 0. The justification for this
change is unclear, but has a non-negligible impact on the bound. To be more precise,
this change of the summation index implicitly increases the error bound and this is not
taken care of. More importantly, though, the analysis resulting in Claim 2 is based on
the assumption that the steady-state detection error is two-sided, whereas—due to the
backward nature of the algorithm— it is in fact one-sided.

3.2 Fox-Glynn error bound revisited

In Sections 1.1.2 and 1.2.2 we discuss the application of the Fox-Glynn algorithm
to computing the transient probabilities of CTMCs and model checking of the time-
bounded reachability property (CSL logic). This algorithm allows to compute trunca-
tion points Lǫ and Rǫ with the weights W and wi(t) for Lǫ ≤ i ≤ Rǫ in such a way
that for a real-valued function f we have:

∣∣∣∣∣

∞∑

i=0

γi(t)f(i) − 1

W

Rǫ∑

i=Lǫ

wi(t)f(i)

∣∣∣∣∣ ≤ ε · ‖f‖,

see Proposition 2 for the exact formulation. In other words the inequality above pro-
vides the error bound for the approximation of the infinite sum

∑∞
i=0 γi(t)f(i). The

following refinement of this error bound can be made for the case when f does not
change sign, i.e., f(i) ≤ 0 or f(i) ≥ 0, for all i. Which is especially important because,
as we will see in the next section, it allows to refine the error bounds for the transient
and time-bounded reachability probabilities computed using the steady-state detection
technique.

Proposition 4 For real-valued function f that does not change sign, and a Poisson
density function γi(t), if

∑Rǫ

i=Lǫ
γi(t) ≥ 1 − ε

2 then the following holds:

∣∣∣∣∣

∞∑

i=0

γi(t)f(i) − 1

W

Rǫ∑

i=Lǫ

wi(t)f(i)

∣∣∣∣∣ ≤
ε

2
· ‖f‖.

Proof See the proof of Proposition 35 from Appendix B.1. �

i

i

i

i

i

i

i

i

64 CHAPTER 3. ON-THE-FLY STEADY-STATE DETECTION

3.3 Improved steady-state detection

In this section, we provide new error bounds for on-the-fly steady-state detection dur-
ing transient analysis and time-bounded reachability. Detailed proofs are provided to
substantiate our claims.

Remark. The error estimate in [97] is norm based and relies on the geometrical
convergence of power iterations for an aperiodic DTMC. The geometrical convergence
is usually proved, based on the total variation norm which, in an N -dimensional space,
is the l∞-norm defined as ‖v‖∞v = maxi∈N[1,N]

|vi|. As all norms in a finite-dimensional
space are equivalent, the convergence result holds for any chosen norm. The error
analysis, however, is vulnerable to the kind of norm used.

As it was mentioned earlier, Claim 1 does not hold for an arbitrary vector norm
‖.‖∞v but only for such that ‖−→p ‖v ≤ 1 for any distribution vector −→p . Similarly, the

norm in Claim 2 can not be chosen arbitrarily. Moreover, since the vector
−−→
p (i) is not

a distribution, i. e. we only know that for all j ∈ N[1,N] : 0 ≤ pj (i) ≤ 1, the norm
restrictions are even more severe. Namely, we can only use a norm such that ‖−→p ‖v ≤ 1
for any vector −→p with 0 ≤ pj ≤ 1 for all j ∈ N[1,N].

To illustrate that, let us use the Euclidean vector norm ‖.‖2
v. Clearly ‖−→p ‖2

v ≤ 1 for
any distribution vector −→p and therefore for this norm the result of Claim 1 holds. On

the other hand, if |S| = N and Lǫ is such that
∑Lǫ−1

i=0 γi(t) ≤ ε
4 then we have:

∥∥∥∥∥

Lǫ−1∑

i=0

γi(t) ·
−−→
p (i)

∥∥∥∥∥

2

v

≤
√

N

4
ε, but not

∥∥∥∥∥

Lǫ−1∑

i=0

γi(t) ·
−−→
p (i)

∥∥∥∥∥

2

v

≤ ε

4
.

The latter, considering the derivations in [145], shows that the results of Claim 2 do
not hold for the Euclidean norm.

The error analysis below is done for vector elements and uses the l∞-norm ‖.‖∞v .
This avoids the above mentioned problems and at the same time keeps the results
practical, because the l∞-norm is easily to compute.

3.3.1 Transient analysis

For the case Lǫ ≤ K ≤ Rǫ we consider:

−−−→
πo (t) =

1

W

K∑

i=Lǫ

wi(t)
−−−→
po (i) +

−−−−→
po (K)

(
1 − 1

W

K∑

i=Lǫ

wi(t)

)
,

obtained from (3.3) by replacing the lower bound of the index of the second summation
by i = Lǫ, as it was done in (3.5), and assuming the Fox-Glynn algorithm is used for
computations. This is where wi(t) and W play a role.

Theorem 5 Let (S, P, L) be an aperiodic DTMC with initial distribution
−→
po, steady-

state distribution
−−→
po,∗ and Ind ⊆ S. If for some K and δ > 0 it holds that ∀i ≥ K :

i

i

i

i

i

i

i

i

3.3. IMPROVED STEADY-STATE DETECTION 65

∥∥∥−−→po,∗ − −−−→
po (i)

∥∥∥
∞

v
≤ δ then for

−−−−→
πo,∗ (t) =

∞∑

i=0

γi(t)
−−−→
po (i)

and for inaccuracy ε > 0:

−−−→
πo (t) =

−−−−→
po (K) , if K < Lǫ

1
W

∑K
i=Lǫ

wi(t)
−−−→
po (i) +

−−−−→
po (K)

(
1 − 1

W

∑K
i=Lǫ

wi(t)
)

, if Lǫ ≤ K ≤ Rǫ

1
W

∑Rǫ

i=Lǫ
wi(t)

−−−→
po (i) , if K > Rǫ

the following inequality holds:

∣∣∣∣∣∣

∑

j∈Ind

(
πo,∗

j (t) − πo
j (t)

)
∣∣∣∣∣∣
≤ 2δ|Ind| + 3

4
ε

Here W , wi(t), Lǫ, and Rǫ are computed using the Fox-Glynn algorithm, such that∑Lǫ−1
i=0 γi(t) ≤ ε

4 , and
∑∞

i=Rǫ+1 γi(t) ≤ ε
4 , and |Ind| is the cardinality of Ind.

Proof See the proof of Theorem 36 from Appendix 3.3.1. �

Then the following corollary gives the error bound for the steady-state detection pro-
cedure.

Corollary 6 Under the same conditions as Theorem 5:

∥∥∥
−−→
po,∗ −−−−−→

po (K)
∥∥∥
∞

v
≤ ε

8|Ind| implies

∣∣∣∣∣∣

∑

j∈Ind

(
πo,∗

j (t) − πo
j (t)

)
∣∣∣∣∣∣
≤ ε (3.7)

Proof See the proof of Corollary 37 from Appendix 3.3.1. �

Let us now return to the calculation of time-bounded reachability probabilities.
For computing the probability Prob

(
s, A U[0,t] G

)
in state s, we have Ind = G and

−→
po =

−−→
1{s}. According to the above results, the safe stopping criterion to obtain an

overall inaccuracy of ε equals
∥∥∥−−→ps,∗ −−−−−→

ps (K)
∥∥∥
∞

v
≤ ε

8|G| . Below we point out the main

differences between our result and the results referred to in Section 3.1.1.
First of all, Theorem 5 takes into account the weights wi(t) (and the normalization

factor W) for determining
−−−→
πo (t). Hence, different summation bounds for the case

Lǫ ≤ K ≤ Rǫ (as wi(t) = 0 for all i < Lǫ) occur in the definition of
−−−→
πo (t). Secondly,

due to the refined bound for Fox-Glynn (cf. Proposition 4), the bounds on the left
and right truncation errors on which Theorem 5 is based are two times tighter than
(1
4 instead of 1

2) the corresponding truncations errors that form the basis for Claim 1.

i

i

i

i

i

i

i

i

66 CHAPTER 3. ON-THE-FLY STEADY-STATE DETECTION

Theorem 5 refers to the l∞-norm, whereas the norm in Claim 1 is left implicit. The
resulting steady-state detection criterion:

∥∥∥
−−→
po,∗ −−−−−→

po (K)
∥∥∥
∞

v
≤ ε

8

for the case |Ind| = 1 (the error for a single vector element πo
j (t)), is tighter than the

bound provided in [97] (see Equation (3.4)):
∥∥∥
−−→
po,∗ −−−−−→

po (K)
∥∥∥

v
≤ ε

4

The fact that the resulting bound is similar to that in Section 3.1.2 for backward
computations is due to the fact that the weights introduce an additional error. In
the next section, it will be shown that for backward computations—even taking into
account the error introduced by weights—the steady-state detection criterion is weaker
than in [143, 145].

3.3.2 Time-bounded reachability

Notice, that, unlike the case for transient probabilities, ∀j ∈ N[1,N] : p∗j − pj (i) ≥ 0 for

all i ≥ K, because ∀j ∈ N[1,N], ∀i ≥ 0 : pj (i) ≤ pj (i + 1) ≤ −→
p∗.

Theorem 7 Let (S, P, L) be an aperiodic DTMC with Ind ⊆ S such that ∀j ∈ Ind :

P (j, j) = 1,
−−→
p (i) = Pi · −−→1Ind and steady-state vector

−→
p∗. If for some K and δ > 0 it

holds that ∀i ≥ K : ∀j ∈ N[1,N] : 0 ≤ p∗j − pj (i) ≤ δ, then for

−−−→
π∗ (t) =

∞∑

i=0

γi(t)
−−→
p (i)

and for inaccuracy ε > 0:

−−→
π (t) =

−−−→
p (K) , if K < Lǫ

1
W

∑K
i=Lǫ

wi(t)
−−→
p (i) +

−−−→
p (K)

(
1 − 1

W

∑K
i=Lǫ

wi(t)
)

, if Lǫ ≤ K ≤ Rǫ

1
W

∑Rǫ

i=Lǫ
wi(t)

−−→
p (i) , if K > Rǫ

the following inequality holds:

∥∥∥
−−−→
π∗ (t) −−−→

π (t)
∥∥∥
∞

v
≤ δ +

3

4
ε

Here W , wi(t), Lǫ, and Rǫ are computed using the Fox-Glynn algorithm, such that∑Lǫ−1
i=0 γi(t) ≤ ε

4 , and
∑∞

i=Rǫ+1 γi(t) ≤ ε
4 .

Proof See the proof of Theorem 38 from Appendix B.2.2. �

Corollary 8 Under the same conditions as Theorem 7:

∥∥∥
−→
p∗ −−−−→

p (K)
∥∥∥
∞

v
≤ ε

4
implies

∥∥∥
−−−→
π∗ (t) −−−→

π (t)
∥∥∥
∞

v
≤ ε (3.8)

i

i

i

i

i

i

i

i

3.4. SAFELY DETECTING STATIONARITY 67

Proof See the proof of Corollary 39 from Appendix B.2.2. �

When computing the probability Prob
(
s, A U[0,t] G

)
we have Ind = G and

−−→
1Ind =

−→
1G . Recall that the main difference with the forward algorithm is that we now employ

a global model-checking procedure, i.e., probabilities Prob
(
s, A U[0,t] G

)
are deter-

mined for all states s. To guarantee an overall error bound of ε, one should use∥∥∥−→p∗ −
−−−→
p (K)

∥∥∥
∞

v
≤ ε

4 as a stopping criterion. Although our result at first sight looks

quite similar to that in [145], there are various small, though important differences.
As for the forward case, the influence of weights (that may yield an additional er-
ror) is taken into account. Secondly, the change of the summation lower bound from
i = 0 to i = Lǫ in equation (3.5) is implicitly taken care of due to the fact that
∀i < Lǫ : wi(t) = 0. If weights are neglected, as in Claim 2, an error bound is obtained
that is too liberal. Finally, we remark that the steady-state detection error is one-sided
for backward computations.

3.3.3 Summary of results

To summarize, we provide Table 3.1 in which we include the claims presented in the
works of Malhotra et. al and Younes et. al, and the corresponding (proven) results of
this work. Please take into account that our results require the use of weights for the

computations of
−−−→
πo (t) and

−−→
π (t) as well as different left and right truncation points for

the computation of Poisson probabilities (cf. Proposition 4).

Forward computations

Malhotra et. al’s result [97]:∥∥∥−−→po,∗ −−−−−→
po (K)

∥∥∥
v
≤ ε

4 implies
∥∥∥
−−−−→
πo,∗ (t) −−−−→

πo (t)
∥∥∥

v
≤ ε (3.4)

Our result:∥∥∥−−→po,∗ −−−−−→
po (K)

∥∥∥
∞

v
≤ ε

8|Ind| implies
∣∣∣
∑

j∈Ind

(
πo,∗

j (t) − πo
j (t)

)∣∣∣ ≤ ε (3.7)

Backward computations

Younes et. al’s result [145]:∥∥∥−→p∗ −
−−−→
p (K)

∥∥∥
v
≤ ε

8 implies ∀j ∈ S : − ε
4 ≤ π∗

j (t) − πj (t) ≤ 3
4ε (3.6)

Our result:∥∥∥−→p∗ −
−−−→
p (K)

∥∥∥
∞

v
≤ ε

4 implies
∥∥∥
−−−→
π∗ (t) −−−→

π (t)
∥∥∥
∞

v
≤ ε (3.8)

Table 3.1: The summary of the results

3.4 Safely detecting stationarity

Although the (theoretical) results obtained so far in this chapter provide safe criteria for
detecting whether an equilibrium has been reached, they suffer from the problem that

i

i

i

i

i

i

i

i

68 CHAPTER 3. ON-THE-FLY STEADY-STATE DETECTION

the stopping criterion refers to the steady-state vector
−→
p∗ that is typically unknown. A

possible way to circumvent this is to use the absolute convergence test (see Section 3.1.1
and 3.1.2). This boils down to comparing probability vectors that are M > 0 iterations
apart but, however, introduces an unknown error.

To avoid this unpredictable error, in case of model checking time-bounded reacha-
bility property, we suggest to exploit the typical structure of the CTMC. Recall that
for checking the formula A U[0,t] G, all states in G and in I = S \ (A ∪ G) are made
absorbing [8]. Intuitively speaking, on the long run, the probability mass will flow to
the states in G and in I, or to bottom strongly connected components (BSCCs)—SCCs
that once entered cannot be left anymore—in the remainder of the CTMC, i.e., in the
set of states S \ (G ∪ I). It can be shown (see below), that we can safely replace
each of these BSCCs by a single absorbing state without affecting the validity of the
time-bounded reachability problem. Checking for an equilibrium now amounts to check
whether the residual probability mass in the remaining non-absorbing states is below
a certain threshold. Let BA,G = {s ∈ B ∩ (A \ G) |B is a BSCC in Q [I ∪ G]}.

Proposition 9 For any state s in CTMC (S, Q, L), time-bounded property A U[0,t] G
and QB = Q [I ∪ G ∪ BA,G] we have:

Prob
(
s, A U[0,t] G

)
in (S, Q, L) = Prob

(
s, S U[t,t] G

)
in (S,QB)

Proof See the proof of Proposition 40 from Appendix B.3. �

Every state s ∈ A \ (G ∪ BA,G) = S \ (I ∪ G ∪ BA,G) is a transient state. This follows
directly from the construction of the matrix QB.

Forward computations. As the probability mass in transient states of QB on the
long run equals 0, this can now be exploited. Due to the uniformization procedure the
same is valid for the stochastic matrix PB obtained after uniformizing CTMC (S, QB).

When i increases, while computing
−−→
1{s} ·Pi

B, the probability to be in a transient state
is only decreasing, and the probability to be in an absorbing state is increasing.

Theorem 10 For the stochastic matrix PB obtained after uniformizing CTMC
(S, QB), for any K and δ > 0 the following holds:

X

j∈A\(G∪BA,G)

p
s
j (K) ≤ δ ⇒ ∀i ≥ K :

‚

‚

‚

−−→
p

s,∗ −
−−−→
p

s (i)
‚

‚

‚

∞

v
≤ δ

Where ps
j (i) is the j’th component of

−−−→
ps (i) =

−−→
1{s} · (PB)

i
, and

−−→
ps,∗ is the steady-state

probability for PB when starting from state s.

Proof See the proof of Theorem 41 from Appendix B.3. �

Notice that this theorem gives a precise error bound for a steady-state detection.

In particular, the premise does not refer to the steady-state prob. vector
−−→
ps,∗. Still the

convergence rate is not known so the check for steady-state should be performed every
M iterations as before.

i

i

i

i

i

i

i

i

3.5. EXPERIMENTAL RESULTS 69

Backward computations. The backward algorithm is based on
−−→
p (i) = (P)

i · −→1G ,

where vector
−→
1G is not a distribution. The idea of backward computations is to accu-

mulate the probability to reach states in G. Information about the probability reaching
A \ (G ∪ BA,G) or BA,G ∪ I is, however, not available. To compute the precise equilib-

rium, we propose to compute, in addition to
−−→
p (i), the probability to be in either BA,G

or I after i steps.

Theorem 11 For the stochastic matrix PB obtained after uniformizing CTMC
(S, QB), for any K and δ > 0 the following holds:

‚

‚

‚

‚

−→
1 −

„

−−−→
p (K) +

−−−−→
p

B (K)

«
‚

‚

‚

‚

∞

v

≤ δ ⇒ ∀i ≥ K :
‚

‚

‚

−→
p
∗ −

−−→
p (i)

‚

‚

‚

∞

v
≤ δ

where
−−→
p (i) = Pi

B · −→1G,
−−−→
pB (i) = (PB)

i · −−−−−→1BA,G∪I, and
−→
p∗ = limi→∞ (PB)

i · −→1G.

Proof See the proof of Theorem 42 from Appendix B.3. �

A few remarks are in order. The premise in Theorem 11 does not refer to the (typically)

unknown steady-state prob. vector
−→
p∗. Moreover, the premise can be checked easily

provided the two prob. vectors
−−−→
p (K) and

−−−−→
pB (K) are known. Note that two probability

vectors are required to be able to detect steady state, which is similar as for using the
absolute convergence test. However, premature stationarity does never occur.

3.5 Experimental results

This section reports on some experiments that we conducted with existing and the
proposed approaches towards on-the-fly steady-state detection. The experiments con-
centrate on illustrating the phenomenon of premature stationarity in existing model
checkers for CTMCs and showing the effect of the technique proposed in Section 3.4.

This is first done by means of a simple, though artificial example. The fact that these
phenomena occur in realistic examples too is illustrated by means of the workstation
cluster case study, and by the IEEE 802.11 group communication protocol, both of
which are presented in Section 1.3. We finally report on the computation time needed
for our proposed algorithm.

The tools that are used in the experiments are PRISM, E ⊢MC2 and our model
checker called MRMC, all of them are discussed in Section 1.4. The first two support an
on-the-fly steady-state detection as described in Section 3.1.2, whereas MRMC realizes
(as an option) the steady-state detection criteria proposed in Sections 3.3.2 and 3.4.
At the time of our experiments GreatSPN v1.0 [38] used E ⊢MC2 as a back-end and
the results reported on E ⊢MC2 therefore were applicable to it. The latest versions of
GreatSPN use MRMC.

All experiments consider the backward algorithm. For comparison reasons, proba-
bilities obtained from Matlab or UltraSAN [120] are used. For all presented examples,
curves obtained with Matlab (UltraSAN) and MRMC, with the steady-state detection
turned on, coincide.

It should be noted that each tool uses different M for steady-state detection, when
employing relative and absolute convergence tests (see Section 1.1.1 on page 6). For

i

i

i

i

i

i

i

i

70 CHAPTER 3. ON-THE-FLY STEADY-STATE DETECTION

example, PRISM uses M = 1, which allows to save on memory usage as only a single
probability vector suffices, while E ⊢MC2 uses M = 10. As a result, PRISM detects
a steady-state earlier than E ⊢MC2.

A slowly convergent CTMC. Consider the CTMC in Figure 3.1 and let A =
{0, 1} and G = {2}. The peculiarity of this CTMC is that the probability to move
from the starting state 1 to the goal state in one or more steps is very low. At the
same time it is easy to see that in the long run the probability to be in the G state,
when starting in state 1 equals to one.

0 1 2

0.9999

0.00005

0.00005

Figure 3.1: A slowly convergent CTMC

Figure 3.2 plots the probability
Prob

(
1, A U[0,t] G

)
for the considered

tools for different time bound t. The
experiments for PRISM are performed
using either a relative (rel) or an abso-
lute (abs) convergence test. As we want
to make these two convergence tests be-
have similarly, the relative error is set to
10−1. This approximately corresponds
to an absolute error of 10−6. Note that
E ⊢MC2 and both variants of PRISM
(abs and rel) detect stationarity prema-
turely whereas MRMC does not. For the indicated range of t, the resulting error is
within the inaccuracy ε = 10−6; for larger values of t (up to around 16,000), the re-
sulting probabilities for E ⊢MC2 and PRISM differ more than ε (and MRMC, as it
should be, does not detect the equilibrium).

The details on the iteration index (K) at which an equilibrium is detected, and the

corresponding probability are given in Table 3.5. Note that
−→
p∗ = limK→∞ PK · −→1Ψ is

not a distribution but a vector of probabilities, since the backward computations are

used. For this example
−→
p∗ = (1.0, 1.0, 1.0)T .

To validate the tweak of the relative error bound for PRISM, it should be noted that
with the original error bound 10−6, the premature steady-state detection still occurs
but for larger values of the time bound t, such as t ≥ 1, 050, 000.

Tool Error K PK · −→1Ψ

PRISM (abs) 10−6 2 (5.00025 · 10−5, 2.5 · 10−9, 1.0)

PRISM (rel) 10−1 12 (5.00275 · 10−5, 2.75 · 10−8, 1.0)
E ⊢MC2 10−6 20 (5.00475 · 10−5, 4.75 · 10−8, 1.0)

MRMC 10−6 — —

Table 3.2: Steady-state detected on iteration K

Workstation cluster. A larger and more realistic example is the workstation clus-
ter. The time-bounded reachability property considered is the probability to eventually
reach a service level below the minimum. The investigated configuration is N=5, and
the minimum QoS equals 3. The resulting CTMC has about 5,000 states. The rates of

i

i

i

i

i

i

i

i

3.5. EXPERIMENTAL RESULTS 71

 4.995e-05

 5e-05

 5.005e-05

 5.01e-05

 5.015e-05

 5.02e-05

 5.025e-05

 10 20 30 40 50 60 70 80 90

P
(1

, A
 U

[0
,t]

 G
)

Time t

ETMCC
Prism (abs)
Prism (rel)

MRMC, SSD On
MatLab

Figure 3.2: The values of Prob
(
1, A U[0,t] G

)
for various t

the model are taken from the PRISM web page [116]. Figure 3.3 plots the computed
probabilities using PRISM and E ⊢MC2 using the absolute error 10−6 and relative
error 10−3. Here A contains all states whereas G represents the set of states for which
the minimum QoS does not hold. The effect of the steady-state detection is similar as
for the artificial example shown before. Note that with the default relative error 10−6,
PRISM prematurely detects steady state for t ≥ 28, 000.

Wireless group communication protocol. As a final example, we consider the
verification of a variant of the centralized medium access protocol of the IEEE 802.11
standard for wireless local area networks. For this case study, Massink et. al. [100]
recently reported the premature detection of steady state during probabilistic model
checking. In our experiments, we confirm their results and show that our new algorithm
does not suffer from these problems.

The property of interest is (as in [21, 100]) to determine whether the probability
that a message originated by the AP is not received by at least one station within
the duration of the time-critical phase, i. e., t = 2.4 seconds. Note that this time
span is considered as extremely large, given that all protocol operations just last a few
milliseconds on average. We consider the verification of this property for the initial
state of the protocol model for different values of OD . Thus, A contains all states of
the protocol model, whereas G contains all failed states, i. e., all states in which more
than OD losses have taken place.

To study the influence of the steady-state detection algorithm, we use the UltraSAN
model of [100] for reference purposes. We vary the omission degree OD from 0 through
8 for four number of stations in the group. The corresponding CTMC has a state
space ranging from 5 to about 9, 500 states. The parameters used in this case study
are adopted from [100] and correspond to PE = 0.00016, the steady-state probability

i

i

i

i

i

i

i

i

72 CHAPTER 3. ON-THE-FLY STEADY-STATE DETECTION

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 4.5e-05

 5e-05

 0 20 40 60 80 100

P
(4

16
7,

 tr
ue

 U
[0

,t]
 !m

in
im

um
)

Time t

ETMCC
Prism (abs)
Prism (rel)

MRMC, SSD On
MatLab

Figure 3.3: Prob
(
4167, A U[0,t] G

)
for various t

to lose a message and FDT = 0.003, the normalized Doppler frequency caused by
the relative motion of receiving and transmitting stations. Figure 3.4 plots the time-
bounded probability (log-scale) versus the omission degree OD . The results of our
algorithm coincide with those of UltraSAN; these results thus coincide with [100].
PRISM prematurely detects an equilibrium for all values of OD . E ⊢MC2 suffers
from the same phenomenon for higher omission degrees.

3.6 Time complexity and empirical evaluation

In this section we first estimate the time complexity of the forward and backward model-
checking algorithms in case of the newly suggested the proposed on-the-fly steady-
state detection algorithm. Then, for the case of backward computations, we report on
the empirical impact of the suggested steady-state detection technique on the model-
checking performance.

Time complexity. As before, we assume that (S, Q, L) is a CTMC, with |S| =
N states. The number of nonzero entries in the generator matrix Q is D, q is the
uniformization rate, and t is the time-bound of the verification property. Assume, that
the sets of states A and G are given.

In case, when on-the-fly steady-state detection is not used, time complexity of com-
puting probability Prob

(
s, A U[0,t] G

)
, for all initial states s ∈ S, is known to be

O (N · D · q · t), for forward computations [10], and O (D · q · t) for backward computa-
tions [81].

Proposed on-the-fly steady-state detection algorithms require search for BSCCs
[132], which takes O (D) time. Choosing A states, belonging to BSCCs (along with

i

i

i

i

i

i

i

i

3.6. TIME COMPLEXITY AND EMPIRICAL EVALUATION 73

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0 1 2 3 4 5 6 7 8

P
(1

, A
 U

[0
,t]

 G
)

OD

ETMCC
Prism (abs)
Prism (rel)

MRMC, SSD On
UltraSAN

Figure 3.4: Prob
(
1, A U[0,t] G

)
for various values of OD

making them absorbing), takes O (D) time. In other words, obtaining PB matrix
requires O (D) time.

For forward algorithm with on-the-fly steady-state detection, every M iterations the
convergence criterion should be checked. It requires O (N) time, but the same iteration
includes computing matrix vector multiplication, which overrides the influence. Thus
for forward computations, including precise steady-state detection, the time complexity
remains to be the same O (N · D · q · t), if computations for all initial states s are
considered.

For backward computations with on-the-fly steady-state detection, in addition, we

have to compute
−−−→
pB (i) = (PB)

i ·−−−−−→1BA,G∪I , every time the
−−→
p (i) = (PB)

i ·−→1G is computed.

This does not influence the time complexity either, thus it remains to be O (D · q · t).
As a conclusion, it is clear that for both forward and backward algorithms, intro-

ducing the proposed on-the-fly steady-state detection, does not change the overall time
complexity of the algorithms.

Runtime. For the backward computations, the typically pattern of verification time
is depicted in Figure 3.5 (These results are obtained on a Pentium 4 3.00GHz, 2Gb
RAM, Suse Linux machine). Prior to the point at which a steady state is detected
during the computation of time-bounded reachability, the run time is doubled. This

is due to the fact that for the backward algorithm,
−−−→
pB (i) is computed in addition to−−→

p (i). Once the equilibrium is reached (and detected), the run time for the variant with
steady-state detection remains constant, whereas the run time of the algorithm without
continues to grow linearly in t. Roughly speaking, if a steady-state is detected at time
t′, then safe on-the-fly steady-state detection is beneficial (in the sense of reducing
verification time) for time spans t ≥ 2 · t′. Unfortunately, we do not know t′ in advance

i

i

i

i

i

i

i

i

74 CHAPTER 3. ON-THE-FLY STEADY-STATE DETECTION

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

C
om

pu
ta

tio
n

tim
e

fo
r

P
(0

, Φ
 U

[0
,t]

 Ψ
)

in
 m

ic
ro

 s
ec

(s
)

Time t

MRMC, SSD Off
MRMC, SSD On

Steady state

Figure 3.5: Runtime vs. time-bound t

to decide whether steady-state detection is beneficial or not.

3.7 Conclusion

In this chapter we showed that the known error bounds and convergence criteria for
the standard transient analysis and time-bounded reachability algorithms, that incor-
porate on-the-fly steady-state detection, are seriously flawed. The latter often leads
to incorrect numerical computations and thus improper model-checking results. Mo-
tivated by this fact, we first refined the error bound of the Fox-Glynn algorithm and
then used it to derive the improved error bounds for the on-the-fly steady-state detec-
tion. Further, these results were complemented by a simple technique to safely detect
a steady-state for the time-bounded reachability. Experiments showed that the new
algorithm improves on existing techniques in probabilistic model checking. Our back-
ward algorithm increases runtime (factor two), and requires two extra vectors. For the
forward algorithm there is no increase of run time, and no additional space is required.
In both cases it is guaranteed to avoid detecting equilibria prematurely.

Although for the backward algorithm the computation time is doubled (prior to
reaching the steady-state, if any at time t′), and one additional probability vector of
size N is needed, the computation time from approximately 2 · t′ on remains constant.
For large time spans (≥ 2 · t′), verification time is thus also reduced.

i

i

i

i

i

i

i

i

Chapter 4

Bisimulation Minimization

Like in the traditional setting, probabilistic model checking suffers from state-space ex-
plosion: the number of states grows exponentially in the number of system components
and cardinality of data domains. To combat this problem, various techniques have been
proposed in the literature. Variants of binary decision diagrams (multi-terminal BDDs)
have been (and still are) successfully applied in PRISM to a range of probabilistic mod-
els, abstraction-refinement has been applied to reachability problems in MDPs [39],
partial-order reduction techniques using Peled’s ample-set method have been general-
ized to MDPs [53], abstract interpretation has been applied to MDPs [104], and various
bisimulation equivalences and simulation pre-orders allow model aggregation prior to
model checking, e. g., [15, 129]. Recently proposed techniques include abstractions of
probabilities by intervals combined with three-valued logics for DTMCs [43, 71, 72] and
CTMCs [85], stochastic ordering techniques for CSL model checking [98], abstraction
of MDPs by two-player stochastic games [92], and symmetry reduction [90].

In this chapter we empirically investigate the effect of strong bisimulation minimiza-
tion in probabilistic model checking. We hereby focus on fully probabilistic models such
as DTMCs and CTMCs (cf. Section 1.1), and variants thereof with costs. The ad-
vantages of probabilistic bisimulation [93] in this setting are manifold. It preserves the
validity of PCTL and CSL formulas (cf. Section 1.2). It implies ordinary lumpability
of Markov chains [24], an aggregation technique for Markov chains that is applied in
performance and dependability evaluation since the 1960s. Quotient Markov chains can
be obtained in a fully automated way. The time complexity of quotienting is logarith-
mic in the number of states, and linear in the number of transitions—as for traditional
bisimulation minimization—when using splay trees (a specific kind of balanced tree)
for storing partitions [41]. Besides, probabilistic bisimulation can be used for obtaining
(coarser) abstractions that are tailored to the properties of interest (as we will see), and
enjoys the congruence property for parallel composition allowing compositional min-
imization. We consider explicit model checking as the non-trivial interplay between
bisimulation and MTBDDs would unnecessarily complicate our study; such symbolic
representations mostly grow under bisimulation minimization [65].

Thanks to extensive studies by Fisler and Vardi [45, 46, 47], it is known that bisim-
ulation minimization for LTL model checking and invariant verification leads to drastic
state space reductions (up to exponential savings) but at a time penalty: the time to

75

i

i

i

i

i

i

i

i

76 CHAPTER 4. BISIMULATION MINIMIZATION

minimize and model check the resulting quotient Kripke structure significantly exceeds
the time to verify the original model. In this chapter we study these issues in proba-
bilistic (i. e., PCTL and CSL) model checking. To that end, bisimulation minimization
algorithms have been realized in MRMC (cf. Chapter 2), several case studies have been
considered that are widely studied in the literature, see also Chapter 1, (and can be
considered as benchmark problems), and have been subjected to various experiments.
Our results show that an enormous state-space reduction (up to exponential savings)
may be obtained. In contrast to the results by Fisler and Vardi [45, 46, 47], the verifi-
cation time of the original Markov chain mostly exceeds the quotienting time plus the
verification time of the quotient. This effect is stronger for probabilistic bisimulation
that is tailored to the property to be checked and for model checking Markov chains
with costs (i. e., rewards). The latter is due to the fact that probabilistic model check-
ing is more time-consuming than traditional model checking, while minimization w. r. t.
probabilistic bisimulation is only slightly slower than for traditional bisimulation. This
effect is even stronger when rewards are considered, since the verification of MRMs is
rather time-consuming.

The rest of this chapter is organized as follows. Section 4.1 introduces the proba-
bilistic bisimulation and the algorithms used. Section 4.2 presents the obtained results
and their analysis. Section 4.3 concludes.

Most of the results presented below are published as [83].

4.1 Bisimulation

Let D = (S,P, L) be a DTMC and R an equivalence relation on S. The quotient of S
under R is denoted S/R. Recall that for any C ⊆ S and s ∈ S:

P(s, C) =
∑

s′∈C

P(s, s′).

Then R is a strong bisimulation on D if for s1 R s2:

L(s1) = L(s2) and P(s1, C) = P(s2, C) for all C in S/R.

s1 and s2 in D are strongly bisimilar, denoted s1 ∼d s2, if there exists a strong bisim-
ulation R on D with s1 R s2. Strong bisimulation [24, 67] for CTMCs, that implies
ordinary lumpability, is a mild variant of the notion for the discrete-time probabilistic
setting: in addition to the above, it is also required that the exit rates of bisimilar
states are equal: E(s1) = E(s2).

Measure-driven bisimulation. Requiring states to be equally labeled with all
atomic propositions is rather strong if one is interested in checking formulas that just
refer to a (small) subset of propositions, or more generally, sub-formulas. The follow-
ing notion weakens the labeling requirement in strong bisimulation by requiring equal
labeling for a set of PCTL formulas F rather than for all atomic propositions. Let
D = (S,P, L) be a DTMC and R an equivalence relation on S. R is a F -bisimulation
on D if for s1 R s2:

s1 |= Φ ⇐⇒ s2 |= Φ for all Φ ∈ F and P(s1, C) = P(s2, C) for all C ∈ S/R.

i

i

i

i

i

i

i

i

4.1. BISIMULATION 77

States s1 and s2 are F -bisimilar, denoted s1 ∼F s2, if there exists an F -bisimulation R
on D with s1 R s2. F -bisimulation on CTMCs (for a set of CSL formulas F) is defined
analogously [11]. Note that strong bisimilarity is F -bisimilarity for F = AP.

Preservation results. Aziz et al. [6] have shown that strong bisimulation is sound
and complete with respect to PCTL (and even PCTL∗):

Proposition 12 Let D be a DTMC, R a bisimulation and s an arbitrary state of D.
Then, for all PCTL formulas Φ, s |=D Φ ⇐⇒ [s]R |=D/R Φ.

If for a set of PCTL formulas F , we define PCTLF as the smallest set of formulas that
contains F and is closed under all of the PCTL operators then the result above can be
generalized to F -bisimulation in the following way:

Proposition 13 Let D be a DTMC, R an F -bisimulation and s an arbitrary state of
D. Then, for all PCTLF formulas Φ, s |=D Φ ⇐⇒ [s]R |=D/R Φ.

Similar results hold for CSL and bisimulation on CTMCs [8], for PRCTL on DMRM,
and for CSRL on CMRM. Note that we consider MRMs with state rewards only.

Bisimulation minimization. The preservation results suggest that one can verify
properties of a Markov chain on a bisimulation quotient. The next issue to consider
is how to obtain the quotient. An often used algorithm (called partition refinement)
is based on splitting: Let Π be a partition of S. A splitter for some block B ∈ Π is a
block Sp ∈ Π such that the probability to enter Sp is not the same for each state in
B. In this case, the algorithm splits B into subblocks such that each subblock consists
of states s with identical P(s, Sp). This step is repeated until a fixpoint is reached.
The final partition is the coarsest bisimulation that respects the initial partition. The
worst-case time complexity of this algorithm is O(|P| log |S|) provided that splay trees
or a data structure with a similar time-complexity of insertion and deletion (to meet
this theoretical complexity bound) is used to store blocks [41]. Although they are
rather memory-consuming, splay trees are adopted in our implementation.

In [40] it is reported that an implementation using red-black trees is slightly faster,
although raises the time complexity to O(|P| log2 |S|). Our experiments with red-black
trees did not confirm this result, but we anticipate that the reported improvement might
be possible given a very efficient implementation of red-black trees. Unfortunately the
latter is hard to realize due to the complexity of the data structure and operations on
it.

Initial partition. The choice of initial partition in the partition refinement algorithm
determines what kind of bisimulation the result is. If we group states labeled with
the same atomic propositions together, the result is the strong bisimulation quotient
S/∼d. If we choose the initial partition according to the satisfaction of formulas in
F , the resulting partition is the F -bisimulation quotient S/∼F . To get the smallest
bisimulation quotient, it is important to start with a coarse initial partition. Instead
of only calculating the strong bisimulation quotient, we will also use measure-driven
bisimulation for a suitable set F . In the following, we define initial partitions using
sets S0, S1, S?, U0, and U1 that are originally introduced in Section 1.2.1 (cf. page 12).

i

i

i

i

i

i

i

i

78 CHAPTER 4. BISIMULATION MINIMIZATION

A naive approach for unbounded until P⊲⊳ b (Φ U Ψ) is to choose F = {Ψ, Φ∧¬Ψ }.
In fact, P⊲⊳ b (Φ U Ψ) is not in PCTLF , but the equivalent formula P⊲⊳ b ((Φ ∧ ¬Ψ) U Ψ)
is. This yields an initial partition consisting of the sets S1 = Sat (Ψ), S? = Sat (Φ ∧ ¬Ψ)
and S0 = S \ (S1 ∪ S?). Note that selecting F = {Ψ, Φ } would lead to a less effi-
cient initial partition with four blocks instead of three. We improve this initial par-
tition by replacing S0 by U0 = Sat (P≤0 (Φ U Ψ)) and S1 by U1, which is essentially1

Sat (P≥1 (Φ U Ψ)). (Defining U0 and U1 as satisfaction sets of some formula has the
advantage that we can still use Proposition 13.) The sets of states U0 and U1 can be
collapsed into single states u0 and u1, respectively. This results in the initial partition
{ {u0}, {u1}, S \ (U0 ∪ U1) }.

For time-bounded until P⊲⊳ b

(
Φ U[0,t] Ψ

)
, one can still use U0, but not U1, since

the fact that (almost) all paths satisfy Φ U Ψ does not imply that these paths
reach a Ψ-state within the time bound. Therefore the initial partition for this case
is { {u0}, {s1}, S \ (U0 ∪ S1) } with u0 as before and s1 the collapsed state for S1.

For time-interval until P⊲⊳ b

(
Φ U[t1,t2] Ψ

)
with t1 > 0 we cannot use the same initial

partition as for the time-bounded until. In particular the set S1 has to be split into
two parts: Sat (Φ ∧ Ψ) and Sat (¬Φ ∧ Ψ). Remember (cf. Section 1.2.2) that paths
satisfying the formula Φ U[t1,t2] Ψ should reach a state satisfying Ψ within the time
span [t1, t2] with all preceding states satisfying Φ. This means that prior to time
t1 states satisfying Φ ∧ Ψ and ¬Φ ∧ Ψ need to be distinguishable, because having a
state satisfying ¬Φ ∧ Ψ before time epoch t1 violates the formula. Thus, the initial
partitioning for time-interval until is { {u0}, Sat (Φ ∧ Ψ) , Sat (¬Φ ∧ Ψ) , S \ (U0 ∪S1) }.

It is clear now that for bounded and interval until the measure-driven initial par-
titions are finer than for unbounded until. In the experiments reported in the next
section, the effect of the granularity of the initial partition will become clear.

4.2 Experiments

To study the effect of bisimulation in model checking, we realized the minimization
algorithms in MRMC and applied them to the following case studies: CP, SLE, CPS,
RME, WC, WGC, P2P. The considered case studies are described in Section 1.3 and
most of them can be obtained from the PRISM webpage [115].

We used PRISM to specify the models and generate the Markov chains. Subse-
quently, the time and memory requirements have been considered for verifying the
chains (by MRMC), and for minimizing plus verifying the lumped chain (both by
MRMC). All reported times are in milliseconds and are obtained by taking the aver-
age of running the experiment 10 times. The memory-usage statistics was collected the
same way as it is described in Section 2.4 and again we report the peak virtual-memory
usage (VSZ) in megabytes.

The time measurements were obtained on a 2.66 GHz Pentium 4 processor (32-bit)
with 1 GB RAM, whereas memory usage was measured on a 2 GHz AMD dual-core
processor (64-bit) with 2 GB RAM. Both machines were running Linux.

1 Up to states s where the set {σ ∈ Path
D(s) | σ 6|= Φ U Ψ } is only almost empty.

i

i

i

i

i

i

i

i

4.2. EXPERIMENTS 79

4.2.1 Discrete time

Crowds protocol (CP) Table 4.1 summarizes the results for P≤b (♦observe) where
observe characterizes a situation in which the sender’s id is detected. The parameter N
in the first column is the number of honest crowd members, the second column shows
parameter R. The next four columns indicate the size of the state space of the DTMC
(i. e., |S|), the number of transitions (i. e., the number of non-zero entries in P), the
verification time and the peak virtual-memory usage (VSZ) while model checking the
above-mentioned property. The next three columns indicate the number of states in
the quotient DTMC, the time needed for obtaining this quotient, the time to check the
validity of the same formula on the quotient and the peak memory consumption while
lumping and model checking. The last three columns indicate the reduction factor for
the number of states, total time and VSZ.

Note that we obtain large state space reductions. Interestingly, in terms of time
consumption, quotienting obtains a reduction in time of about a factor 4 to 7. The
memory usage for small models was not measurable due to the insignificant execution
time. For larger models the use of memory is reduced by about 30%. It is important
to note that in case of F -bisimulation MRMC keeps the original probability matrix
allocated and creates a new matrix for the lumped model. Therefore the reduction
of used memory indicates that a significant space is needed for storing results and
temporary data when model checking the unbounded-until property. Note that with
the given frequency of memory sampling the model-checking phase after lumping is
likely to be not covered as it takes only up to two milliseconds.

original DTMC lumped DTMC red. factor

N R states transitions ver. time VSZ blocks lump. time ver. time VSZ states time VSZ

5 3 1198 2038 3.2 – 53 0.6 0.3 – 22.6 3.7 –
5 4 3515 6035 11 – 97 2.0 0.5 – 36.2 4.4 –
5 5 8653 14953 48 – 153 6.0 0.9 – 56.6 6.9 –
5 6 18817 32677 139 – 209 14 1.4 – 90 9 –

10 3 6563 15143 24 – 53 4.6 0.2 – 124 4.9 –
10 4 30070 70110 190 – 97 29 0.5 – 310 6.4 –
10 5 111294 261444 780 29.7 153 127 0.9 – 727 6.1 –
10 6 352535 833015 2640 92.1 221 400 1.4 63.4 1595 6.6 1.45

15 3 19228 55948 102 – 53 23 0.2 – 363 4.4 –
15 4 119800 352260 790 33.1 97 190 0.5 – 1235 4.1 –
15 5 592060 1754860 4670 160.6 153 1020 0.9 112.2 3870 4.6 1.43
15 6 2464168 7347928 20600 665.1 221 4180 1.5 465.1 11150 4.9 1.43

Table 4.1: CP, bisimulation: P≤b (♦observe)

Synchronous Leader Election Protocol (SLE) The property of interest is the
probability to elect a leader within N rounds: P≤q

(
♦[0,(N+1)·3]elected

)
. The obtained

results are summarized in Table 4.2.
For a fixed N , the number of blocks is constant. This is due to the fact that the

initial state is the only probabilistic state and that almost all states that are equidistant
w. r. t. this initial state are bisimilar. For N = 4, no gain in computation time is
obtained due to the relatively low number of iterations needed in the original DTMC.

i

i

i

i

i

i

i

i

80 CHAPTER 4. BISIMULATION MINIMIZATION

When N increases, bisimulation minimization also pays off time wise. In this case a
small reduction is obtained because the time bound of the until-formula amplifies with
N . The latter raises the number of matrix-vector multiplications in the model-checking
procedure (cf. Section 1.2.1).

In this case the results for memory consumption are not reliable because the run
times allow for at most two memory samplings per experiment (the memory is analyzed
every 100 milliseconds). The present data indicates that in case of N = 5 and K = 8
the memory use is increased by about 30%, but for the larger model (N = 4 and
K = 16) the increase is only about 5%.

original DTMC lumped DTMC red. factor

N K states transitions ver. time VSZ blocks lump. time ver. time VSZ states time VSZ

4 2 55 70 0.02 – 10 0.05 0.01 – 5.5 0.4 –
4 4 782 1037 0.4 – 10 0.5 0.01 – 78.2 0.8 –
4 8 12302 16397 7 – 10 9.0 0.01 – 1230 0.8 –
4 16 196622 262157 165 30.9 10 175 0.01 32.3 19662 0.9 0.96

5 2 162 193 0.1 – 12 0.1 0.02 – 13.5 0.9 –
5 4 5122 6145 2.8 – 12 2.9 0.02 – 427 0.9 –
5 6 38882 46657 28 – 12 26 0.02 – 3240 1.1 –
5 8 163842 196609 140 17.7 12 115 0.02 24.8 13653 1.2 0.71

Table 4.2: SLE, bisimulation: P≤q

(
♦[0,(N+1)·3]elected

)

Cyclic Server Polling System (CPS) For this case study we model-check the

formula: P⊲⊳ b

(∧N
j 6=1 ¬servej U serve1

)
, i. e. with probability ⊲⊳ b station 1 will be

served before any other station. We also consider a time-bounded version thereof2.
Note that the original model is a CTMC and thus, in order to switch to the discrete-time
domain, we verify the properties on the DTMC that is obtained after uniformization.

Ordinary (strong) bisimulation yields no state-space reduction. The results for
measure-driven bisimulation minimization are summarized in Table 4.3. In checking
the bounded-until formula, we used the naive initial partition { {s0}, {s1}, S? }. The
improved initial partition with {u0} would have led to almost the same number of
blocks as the unbounded until, e. g., 46 instead of 151 blocks for N = 15. For both
formulas, large reductions in state space size as well as computation time are obtained;
the effect of {u0} on the number of blocks is also considerable.

The only reliable results for the peak-memory consumption are available in case of
N = 15. The memory usage, when model checking the unbounded-until formula with
lumping, is reduced by 22%. We do not provide results for the time-bounded until due
to the use of a specific initial partitioning.

Randomized Mutual exclusion (RME) Table 4.4 summarizes our results for ver-
ifying the property that process 1 is the first to enter the critical section, i. e., the PCTL

formula P≤q

(∧N
j 6=1 ¬enter j U enter1

)
. Due to the relatively high number of transi-

tions, quotienting the DTMC according to AP-bisimilarity is computationally expen-

2An arbitrarily chosen upper time bound was set to 1010.

i

i

i

i

i

i

i

i

4
.2

.
E

X
P

E
R

IM
E

N
T

S
8
1

original DTMC time-bounded until unbounded until

lumped DTMC red. factor lumped DTMC red. factor

N states transitions U[0,t] U blocks lump. + states time blocks lump. + VSZ states time VSZ

time time VSZ ver. time ver. time

4 96 368 1.4 2.1 – 19 0.4 5.1 3.5 12 0.9 – 8 2.3 –
6 576 2784 10 11 – 34 1.2 16.9 8.3 18 1.4 – 32 7.9 –
8 3072 17920 62 52 – 53 4.0 58 15.5 24 2.9 – 128 17.9 –
12 73728 577536 3050 3460 25.7 103 120 716 25.4 36 55 – 2048 62.9 –
15 737280 6881280 39000 32100 269.6 151 1590 4883 24.5 45 580 210.0 16384 55.3 1.28

Table 4.3: CPS, bisimulation: The reachability properties

original DTMC strong bisimulation F -bisimulation

lumped DTMC red. factor lumped DTMC red. factor

N states tran- ver. VSZ blocks time VSZ states time VSZ blocks lump. + VSZ states time VSZ

sitions time lump. ver. ver. time

3 2368 8272 3 – 1123 8 1.6 – 2.1 0.3 – 233 2.9 – 10.2 1.0 –
4 27600 123883 47 – 5224 192 19 – 5.3 0.4 – 785 29 – 35.2 1.6 –
5 308800 1680086 837 91.3 18501 2880 120 69.8 16.7 0.3 1.31 2159 507 66.4 143 1.7 1.38

6 3377344 21514489 9589 1046.6 – > 107 – 786.2 – – 1.33 5166 7106 774.3 653 1.4 1.35

Table 4.4: RME, bisimulation: P≤q

(∧N
j 6=1 ¬enter j U enter1

)

original CTMC time-bounded until [0, 40] time-interval until [20, 40]

lumped CTMC red. factor lumped CTMC red. factor

N states
tran- U[0,40] U[20,40]

blocks
lump.

VSZ states time VSZ blocks
lump.

VSZ states time VSZ
sitions ver. VSZ ver. VSZ + ver. + ver.

time time time time

8 2772 12832 36 – 49 – 239 16.3 – 11.6 2.2 – 386 24 – 7.2 2.0 –
16 10132 48160 360 3.1 480 3.2 917 70 – 11.0 5.1 – 1300 96 – 7.8 5.0 –
32 38676 186400 1860 9.4 2200 9.7 3599 300 10.4 10.7 6.2 0.90 4742 430 10.3 8.2 5.1 0.94
64 151060 733216 7200 34.1 8500 35.3 14267 1810 38.4 10.6 4.0 0.89 18082 2550 38.2 8.4 3.3 1.01

128 597012 2908192 29700 132.2 33700 136.7 56819 9300 147.9 10.5 3.2 0.89 70586 12800 148.7 8.5 2.6 0.92
256 2373652 11583520 121000 523.2 143000 541.3 226787 45700 584.3 10.5 2.6 0.90 278890 60900 585.2 8.5 2.3 0.92

Table 4.5: WC, bisimulation: The reachability properties

i

i

i

i

i

i

i

i

82 CHAPTER 4. BISIMULATION MINIMIZATION

sive, and takes significantly more time than verifying the original DTMC. However,
measure-driven bisimilarity yields a quotient that is roughly an order of magnitude
smaller than the quotient under AP-bisimilarity. Due to the coarser initial partition,
this quotient is constructed rather fast. In this case, verifying the original model is
more time consuming and the memory consumption is about 25% higher.

4.2.2 Continuous time

Workstation cluster (WC) In this case study the number of correctly functioning
workstations determines the level of quality of service (QoS). We concentrate on model
checking the following properties:

• S≥0.7 (maximum) – In the long run, maximum QoS will be delivered in at least
70% of the cases;

• P≤0.1

(
♦[0,40]minimum

)
– The probability that QoS drops below minimum,

within 40 time-units, is at most 0.1;

• P≥0.9

(
minimum U[20,40] maximum

)
– The probability that QoS goes from mini-

mum to maximum between 20 and 40 time units is at least 0.9.

The results for the steady-state property are provided in Table 4.6. The plain verifi-

original CTMC lumped CTMC red. factor

N states transitions ver. time VSZ blocks lump. time ver. time VSZ states time VSZ

8 2772 12832 3.6 – 1413 12 130 – 2 0.03 –
16 10132 48160 21 – 5117 64 770 2.4 2 0.03 –
32 38676 186400 114 – 19437 290 215 10.0 2 0.2 –
64 151060 733216 730 51.8 75725 1360 1670 51.8 2 0.2 1.0

128 597012 2908192 6500 202.3 298893 5900 14900 202.3 2 0.2 1.0
256 2373652 11583520 103000 801.8 1187597 25400 175000 801.8 2 0.2 1.0

Table 4.6: WC, bisimulation: S≥0.7 (maximum)

cation time of the quotient is larger than of the original CTMC, despite a state-space
reduction of a factor two. This is due to the fact that model checking of the given
property involves solving systems of linear equations (cf. Section 1.2.2). The conver-
gence rate of the employed Gauss-Seidel method strongly depends on the sub-dominant
eigenvalue of the iteration matrix, i. e., the closer this value is to one, the slower the
convergence. In this case the sub-dominant eigenvalues of the Gauss-Seidel iteration
matrix before and after lumping differ significantly. For instance for N = 8, the values
of the original (0.156) and the quotient (0.993) are far apart and the number of itera-
tions needed differ for about two orders of magnitude. The same applies for N = 16,
although the differences are smaller for larger values of N . Note that the amount of
memory needed for model checking with and without lumping is the same due to the
low state-space reduction which is then matched with the memory consumed by stor-
ing the lumped model, the resulting partitioning and the temporary data structures
needed for model checking.

The results for time-bounded and time-interval reachability are summarized in Ta-
ble 4.5. These results are obtained using the measure-driven bisimulation. In contrast,

i

i

i

i

i

i

i

i

4.2. EXPERIMENTS 83

for an AP-bisimulation, we only obtained a 50% state-space reduction. For measure-
driven bisimulation another factor 4–5 reduction is obtained. The number of blocks for
time-bounded and time-interval properties differ. This is because model checking of
the latter one involves a sequence of two transient analysis on different CTMCs which
requires a finer initial partition (cf. Section 4.1). The reduction factors obtained for
this case study are not so high, as its formal (stochastic Petri net) specification already
exploits some lumping; e. g., workstations are modeled by anonymous tokens. The
peak memory consumption in case of AP-bisimulation for the considered formulas is
increased by about 8%.

Wireless Group Communication Protocol (WGC) The property of interest is,
as in [100] and other studies of this protocol, the probability that a message originated
by the Access Point is not received by at least one station within the duration of the
time-critical phase (t = 2.4 milliseconds), i. e., P⊲⊳ b

(
♦[0,24000]fail

)
where fail identifies

all states in which more than OD losses have taken place. Table 4.7 reports the results
for the verification of this property for different values of OD and the minimization
results for a measure-driven bisimulation.

original CTMC lumped CTMC red. factor

OD states transitions ver. time VSZ blocks lump. + VSZ states time VSZ
ver. time

4 1125 5369 121.9 – 71 13.5 – 15.9 9.00 –
12 37349 236313 7180 10.1 1821 642 10.6 20.5 11.2 0.95
20 231525 1590329 50133 61.4 10627 5431 64.9 21.8 9.2 0.95
28 804837 5750873 195086 217.3 35961 24716 231.3 22.4 7.9 0.94
36 2076773 15187833 5103900 573.1 91391 77694 611.3 22.7 6.6 0.94
40 3101445 22871849 7725041 863.5 135752 127489 922.8 22.9 6.1 0.94

Table 4.7: WGC, bisimulation: P⊲⊳ b

(
♦[0,24000]fail

)

We obtain a state space reduction of about a factor 22, which results in an efficiency
improvement of a factor 5 to 10. The reason that the verification times are rather
excessive for this model stems from the fact that the time bound (24000) is very large,
resulting in many iterations. These verification times can be improved by incorporating
an on-the-fly steady-state detection, but this is not further considered here. A detailed
discussion of the impact of on-the-fly steady-state detection on this case study can be
found in Chapter 3. Like for the WC case study, here we have an increase of peak
memory usage by about 7%.

Simple Peer-To-Peer Protocol (P2P) We verified P>0

(
♦[0,0.5]done

)
, i. e. the

probability that all blocks are downloaded within 0.5 time units is greater that 0. Ta-
ble 4.8 summarizes our minimization results using AP-bisimularity (columns 4 through
8) and the results for a recently proposed symmetry reduction technique for probabilis-
tic systems [90] that has been realized in PRISM.
We observe that bisimulation minimization leads to a significantly stronger state-space
reduction than symmetry reduction. For N = 3 and N = 4, bisimulation minimization
leads to a state-space reduction of more than 23 and 66 times, respectively, the reduc-
tion of symmetry reduction. Symmetry reduction is—as expected—much faster than

i

i

i

i

i

i

i

i

84 CHAPTER 4. BISIMULATION MINIMIZATION

original CTMC bisimulation minimization symmetry reduction

lumped CTMC red. factor reduced CTMC red. factor

N states ver. time blocks lump. time ver. time states time states red. time ver. time states time

2 1024 5.6 56 1.4 0.3 18.3 3.3 528 12 2.9 1.93 0.38
3 32768 410 252 170 1.3 130 2.4 5984 100 59 5.48 2.58
4 1048576 22000 792 10200 4.8 1324 2.2 52360 360 820 20 18.3

Table 4.8: P2P, bisimulation: P>0

(
♦[0,0.5]done

)

bisimulation minimization, but this is a somewhat unfair comparison as the symmetries
are indicated manually. These results suggest that it is affordable to first apply a (fast)
symmetry reduction, followed by a bisimulation quotienting on the obtained reduced
system. Unfortunately, the available tools did not allow us to test this idea, and this
is left for future work.

4.2.3 Rewards

This section reports on the results for bisimulation minimization for Markov reward
models. Note that the initial partitions need to be adapted such that only states with
equal reward are grouped. We have equipped two DTMCs and one CTMC with a
reward assignment function r:

• CP (DMRM): the reward indicates the number of messages sent;

• RME (DMRM): the reward indicates the number of attempts that have been
undertaken to acquire access to the critical section;

• WC (CMRM): the reward is used to measure the repair time.

Recall (cf. Chapter 1) that for DMRMs, r(s) indicates the reward that is earned
on leaving a state, while for CMRMs, r(s)·t is the earned reward when staying t
time-units in s. The experiments are focused on verifying time- and reward-bounded
until-formulas. For DMRMs, these formulas are checked using a path graph generation
algorithm as proposed in [4] which has a time complexity in O(k·r·|S|3), where k and
r are the time-bound and reward-bound, respectively. For CMRMs, we employed the
discretization approach by Tijms and Veldman as proposed in [133] which runs in time
O(t·r·|S|3·d−2) where d is the step size of the discretization. In our experiments, the
default setting is d = 1

32 .

For the CP case study (with R = 3), we checked P≤0.2

(
♦

[0,100]
[0,2] observe

)
– the prob-

ability that the sender’s id is discovered, within 100 steps and maximally 2 messages
sent, is at most 0.2. In case of the RME case study, we model checked the prop-

erty P>0

(∧N
j 6=1 ¬enter j U

[0,50]
[0,10] enter1

)
– the probability that process one is the first

to enter the critical section, withing 50 time units and 10 attempts, is greater than

0. Finally, for the WC case study, we checked P>0.5

(
minimum U

[0,10]
[0,5] maximum

)
–

the probability that QoS goes from minimum to maximum, within 10 time units and

i

i

i

i

i

i

i

i

4.3. CONCLUSION 85

Crowds protocol with rewards

original DMRM lumped DMRM red. factor

N states transitions ver. time VSZ blocks lump. + VSZ states time VSZ
ver. time

5 1198 2038 2928 1.1 93 44.6 – 12.88 65.67 –
10 6563 15143 80394 2.0 103 73.5 – 63.72 1094.49 –
15 19228 55948 1004981 4.4 103 98.7 – 186.68 10182.13 –
20 42318 148578 5174951 8.9 103 161 – 410.85 32002.61 –

Randomized mutual exclusion protocol with rewards

2 188 455 735 – 151 616 – 1.25 1.19 –
3 2368 8272 60389 1.9 1123 19010 1.5 2.11 3.18 1.27
4 27600 123883 5446685 12.7 5224 298038 6.9 5.28 18.28 1.84

5 308800 1680086 > 107 122 18501 3664530 68.6 16.69 – 1.78

Workstation cluster with rewards

original CMRM lumped CMRM red. factor

2 276 1120 278708 1.6 147 55448 1.2 1.88 5.03 1.33
3 512 2192 849864 1.8 268 151211 1.3 1.91 5.62 1.38
4 820 3616 2110095 2.1 425 347324 1.5 1.93 6.08 1.40

5 1200 5392 > 107 3.4 618 2086575 2.1 1.94 – 1.62

6 1652 7520 > 107 4.0 847 3657682 2.5 1.95 – 1.60

Table 4.9: CP, RME and WC: Bisimulation for the reward-based properties

with at most 5 time units spent for repair, is greater than 0.5. All results are listed in
Table 4.9.

Due to the prohibitive (practical) time-complexity, manageable state-space sizes
are (much) smaller than for the case without rewards. Another consequence of these
large verification times, bisimulation minimization is relatively cheap, and results in
possibly drastic time savings, as for the Crowds protocol. The memory usage in case of
lumping, as indicated in the last column of Table 4.9, is reduced. The possible memory
gain is from about 21% to 46%.

4.3 Conclusion

Our experiments confirm that significant (up to exponential) state space reductions can
be obtained using bisimulation minimization. The appealing feature of this abstrac-
tion technique is that it is fully automated. For several case studies, also substantial
reductions in time have been obtained (up to a factor 50, cf. Table 4.3). This contrasts
results for traditional model checking where bisimulation minimization typically out-
weighs verifying the original system. Time reduction strongly depends on the number
of transitions in the Markov chain, its structure, as well as on the convergence rate
of numerical computations. The P2P protocol experiment shows encouraging results
compared with symmetry reduction [90] (where symmetries are detected manually).
For measure-driven bisimulation for models without rewards, this speedup comes with
almost no memory penalty: the peak memory use may be increased by up to 8% al-

i

i

i

i

i

i

i

i

86 CHAPTER 4. BISIMULATION MINIMIZATION

though typically it is reduced or remains unchanged; for ordinary bisimulation some
experiments showed an increase of peak memory up to 50%. In our case studies with
rewards, we experienced a 21–46% reduction in peak memory use. Another important
observation is that the memory needed for storing the Markov chain may not be as sig-
nificant (see the CP case study) as the memory required for temporary data structures
used during model checking.

i

i

i

i

i

i

i

i

Part II

Model Checking by Discrete
Event Simulation

87

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

Chapter 5

Preliminaries

In the Oxford English Dictionary, simulation is described as:

“The technique of imitating the behavior of some situation or system (eco-
nomic, mechanical, etc.) by means of an analogous model, situation, or
apparatus, either to gain information more conveniently or to train person-
nel.”

In other words, simulation is the technique of building a model of a real or proposed
system for studying its behavior under specific conditions. One of the key powers of
simulation is the ability to model the behavior of a system as time progresses. In
discrete event simulation, see the books of Mitrani [101] and Cassandras [27], the
operation of a system is modeled as a chronological sequence of events. Each event
occurs at an instant in time and marks a change of state in the system. By the
system, we mean a collection of entities (e. g., people, machines or network services)
that interact over time. The particular nature of the system and the properties we wish
to understand can vary. The unknown properties of the system are estimated from the
system’s observed behavior. Typically, these properties represent measures of system
performance that can be expressed as the mean values of some random variables.

There are numerous examples of the use of discrete event simulation in areas such
as service industries, manufacturing, and office environments. An attractive feature of
simulation in general is that it can be applied to both finite- and infinite-state systems.
Therefore, one of the most typical application areas for discrete event simulation is
analysis of queuing systems. Below, we provide a trivial example of such a system and
point out the measures of interest that can be obtained using simulation. Note that
this example will be used throughout the chapter for illustrative purposes.

Example 8 Consider a bank which opens at time to. By this time some customers
may be already waiting for the bank to open, and then during the day people come and
leave once they have been served. The number of customers at the beginning of the next
day depends on the number of people that were in the bank by the closing time tc. The
number of customers St in the bank at any time t is bounded by Cmax.

In this setting one may be interested in αc
M – the probability of having Cmax cus-

tomers in the bank at time tc. The desired value can be computed as αc
M = E [IM (Stc

)],

89

i

i

i

i

i

i

i

i

90 CHAPTER 5. PRELIMINARIES

8

3 60

1 4

2 5

7

1.0

1.0

1.0

λ

λ λ

λ

β β

β

λ λ

β

ββ

γ γ

γγ

γγ

Figure 5.1: The bank system for to = 8.00am, tc = 10.00am, and Cmax = 4.

where the function IM (n) is defined as follows:

IM (n) =

{
1 if n = Cmax

0 otherwise

Another measure of interest is αM – the probability of having Cmax customers in the
bank at any particular work hour, i. e. in the long run. If S∞ is the r. v. representing
the number of customers in the bank in the long-run, then the value of interest can be
computed as αM = E [IM (S∞)].

Typically the distributions of Stc
and S∞ are unknown, and thus αc

M and αM cannot
be computed. Therefore they have to be estimated by observing the bank, e. g., we can
see that on Monday Stc

= 3, on Tuesday Stc
= 1, on Wednesday Stc

= 3 and so on.
Figure 5.1 shows an example of such a bank modeled as a homogeneous Markov

Chain. Here states {0, 1, 2}, {3, 4, 5}, and {6, 7, 8} correspond to customers waiting
in the bank at 8.00, 9.00, and 10.00 o’clock respectively. States {0, 3, 6}, {1, 4, 7}, and
{2, 5, 8} correspond to 0, 1, and 2 customers being in the bank. This example we treat
both as a DTMC and as a CTMC. In the former case the transition values λ, β, and
γ are probabilities, and can be assigned any positive real values between 0 and 1, such
that λ + β + γ = 1. In the latter case λ, β, and γ represent rates, and can be assigned
any finite positive real value.

Our goal is to apply discrete event simulation to model checking CSL proper-
ties on finite-state continuous-time Markov chains. In particular, we are interested
in model checking probabilistic operators such as: steady-state, unbounded-until, and
time-interval until. Similar to numerical model checking thereof, see Chapter 1, our ap-
proach will boil down to estimating transient and steady-state probabilities of CTMCs.
In Chapter 6, among other things, we show how these probabilities can be represented
as mean values of certain random variables. The latter implies that in order to apply
simulation to CSL model checking we need to know how to do two things: (i) estimate

i

i

i

i

i

i

i

i

5.1. SIMULATING RANDOM VARIABLES 91

mean values of random variables using simulations; (ii) simulate random variables
whose mean values represent our measures of interest. In this chapter, we are going
to discuss these key points of discrete event simulation using theory (mostly) adopted
from [101].

The rest of the chapter is organized as follows. We begin with Section 5.1 where
we briefly explain simulation of random variables. This is done by recalling the notion
of a random variable and introducing terms such as observation and sample. Further,
in Section 5.2, we talk about point estimates. The latter are single-value estimates of
a desired measure that is the parameter of a random variable. Motivated by our goal,
we concentrate on the case when the measure of interest is the mean value. Confidence
intervals are another, more precise, way to estimate parameters of random variables.
Therefore, in Section 5.3 we discuss (symmetric) confidence intervals for mean val-
ues. Sections 5.4 through 5.6 are devoted to simulation methods that allow to derive
confidence intervals for various measures of interest. First, we describe terminating
simulation that is a simulation in which the desired measure of system performance is
defined relative to the time interval marked by some events. Then, we discuss steady-
state simulation where the measure of interest is defined in the limit of time going to
infinity. Finally, we study a discrete-time method for simulating CTMCs that allows
to estimate steady-state measures using simulation runs performed on the embedded
DTMCs. The introduction to discrete event simulation ends with Section 5.7. In this
section, we provide confidence intervals for the mean values of Bernoulli distributed
random variables and talk about the strong law of large numbers for Bernoulli trials.

5.1 Simulating random variables

From probability theory we know that a random variable (r. v.) X defined on a prob-
ability space (Ω,F ,Prob) is a measurable function X : Ω → R. Recall that F is a
σ-algebra defined on the subsets of Ω, where every element of F is called an event and
has a probability value associated with it via the probability measure function Prob.
The following example shows the way of formally defining a r. v. and the corresponding
probability space. Note that this knowledge is crucial for understanding Section 5.7
where we consider Bernoulli trials.

Example 9 For instance consider an experiment in which we toss a fair coin. The
set of possible outcomes of the experiment gives us the sample space Ω = {H, T },
where H stands for “heads” and T for “tails”. The σ-algebra is then defined as F =
{∅, {H} , {T } , {H, T }} and the probability measure is given by Prob ({H}) = 0.5 and
Prob ({T }) = 0.5.

For such an experiment we can determine a r. v. as the following function of ω ∈ Ω:

Xc (ω) =

{
1 if ω = H
0 if ω = T

Note that for any r ∈ R the set {ω ∈ Ω|Xc (ω) ≤ r} is an element of the σ-algebra F ,
i. e. is an event. Therefore, Xc is a measurable function.

When simulating a r. v. X , all we normally know is the sample space of the ex-
periment and the way the r. v. is defined. The latter allows us to observe the value

i

i

i

i

i

i

i

i

92 CHAPTER 5. PRELIMINARIES

of X obtained from a single experiment and this value we call an observation. Tak-
ing M independent instances of the experiment we observe the values of M inde-
pendent and identically distributed random variables (i. i. d. r. v.) X1, . . . , XM , which
provide us with a vector of M observations, that we call a sample and denote as−→
X = (X1, . . . , XM).

It is important to note that further a sample is seen in two ways, first as a vector
of values sampled from the i. i. d. r. v. X1, . . . , XM and second as a vector of the i. i. d.

r. v.
−→
X. Normally the distinction is clear from the context or is pointed out but to

avoid misinterpretation, we provide a simple rule of thumb, namely: When it comes to
examples and practical applications a sample is a vector of particular sampled values
but when it is used in theoretical derivations it is typically treated as a vector of r. v.

5.2 Point estimates

Let X be a r. v. and α an unknown value of the desired quantity that is a parameter
of X , for instance α is the mean value of X . We would like to estimate the value of α

by observing the r. v., i. e. considering a sample of its observations
−→
X = (X1, . . . , XM).

Given the sample of observations and a real-valued function A : R
M → R, let us

call A = A(
−→
X) a point estimate (p. e.) for the unknown value α. Generally speaking,

a point estimate is a r. v. because it can be seen as function of the sequence of r. v.

given by the sample
−→
X. So far, the p. e. of α was defined as an arbitrary function.

The following definitions identify two important properties that a “good” p. e. might
be expected to possess.

Definition 15 A point estimate A for α is unbiased if E [A] = α.

Definition 16 A point estimate A for α is consistent if for every ε > 0:

Prob (|A − α| < ε) → 1 when M → ∞.

Clearly, being unbiased and consistent are two desirable properties of an estimate. The
following proposition gives us a p. e. that has these properties for the case when the
unknown parameter of X is its mean value.

Proposition 14 If α = E [X], then for a sample
−→
X = (X1, . . . , XM) of independent

observations,

X =
1

M
·

M∑

i=1

Xi (5.1)

is an unbiased and consistent p. e. for α.

It is clear that the larger the number of observations M , the better X approximates
the value of α. Yet M has to stay finite and then still even an unbiased and consistent
estimate can be widely off the mark on a particular sample, as is shown in the next
example.

i

i

i

i

i

i

i

i

5.3. CONFIDENCE INTERVALS 93

Example 10 For the DTMC model of the bank, discussed in Example 8, let us choose
λ = 0.1, β = 0.3, and γ = 0.6. Observing the r. v. IM (Stc

)1, we can have the following
sample of 10 observations: (0, 1, 1, 1, 0, 1, 1, 0, 1, 0). Here we assume that for every
simulation run we start in the state 0 i. e. there are no customers waiting for the bank
to open in the morning. The parameter of IM (Stc

) we want to know is its mean αc
M .

Then using Proposition 14, the p. e. of αc
M is:

X =
1

10
(0 + 1 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 0) = 0.6.

The exact value of αc
M = 0.3, which is rather different from the estimated value.

As we see in Example 10, sometimes having a p. e. of an unknown parameter α of
X is not enough, simply because it is not clear how close the estimate is to the real
value. In this case the confidence interval approach is used, that gives an estimated
range of values which is likely to include α. The estimated range is again calculated
from a given sample data. This technique is discussed in the next subsection.

5.3 Confidence intervals

Generally speaking, a confidence interval is an interval in which a measurement or trial
falls corresponding to a given probability. For a r. v. X and its unknown parameter α,
the confidence interval is defined as follows:

Definition 17 The confidence interval (c. i.) is defined by two real-valued functions of

the sample
−→
X = (X1, . . . , XM), denoted Al

(−→
X
)

and Ar

(−→
X
)
, such that regardless of

the value of α:

Prob
(
Al

(−→
X
)
≤ α ≤ Ar

(−→
X
))

= 1 − β, for some 0 < β < 1.

The probability 1 − β is called the confidence of the confidence interval.

Confidence intervals are frequently used. In the literature one can often find 95%
c. i., i. e., derived with 0.95 confidence. It implies that, under repeated sampling, the
obtained c. i. contain the mean value in 95% of cases. In other words, the confidence
is a measure of the assurance you have that the derived interval contains the actual
mean value.

In what follows, we shall concentrate on deriving the c. i. of α that is the mean of
r. v. X (α = E [X]). In this work we only consider symmetric confidence intervals, i. e.
the ones that are symmetrically placed around the mean.

The rest of this section is organized as follows. First, in Section 5.3.1, we discuss
the way of deriving the most general c. i. for α, with no assumptions on X . Further, in
Section 5.3.2, we consider a special case when X is a normally-distributed r. v.. Under
this assumption the standard confidence interval for α will be proven to have a better
accuracy. Later, in Section 5.3.3, we discuss the influence of the sample size and the
confidence on the width of the c. i.. The discussion is concluded by Section 5.3.4 where
we provide an example that shows how the c. i. can be applied to improve the estimate
of the measure given in Example 10.

1In this case it takes value 1 if there are two customers in the bank at 10.00 o’clock and 0 otherwise.

i

i

i

i

i

i

i

i

94 CHAPTER 5. PRELIMINARIES

5.3.1 The standard confidence interval

The general approach to finding the c. i. is based on the existence of a r. v., Z
(−→
X, α

)
,

a function of the sample and the unknown parameter α, whose distribution is fixed
and known. This function can be derived with the help of the Central Limit Theorem.

Theorem 15 (Central Limit Theorem) Let X1, X2, . . . be a sequence of i. i. d. r. v.
with finite mean α and variance σ2 6= 0. Then the distribution of the r. v.

∑M
i=1 Xi − M · α√

M · σ
(5.2)

approaches the standard normal distribution, N(0, 1), as M → ∞.

The function (5.2) is a r. v. for which we know the distribution2 when M goes
to infinity. We also hope that for a sufficiently large value of M , we are close to
this distribution. The latter assumption allows us to reason about the value of α by
deriving a c. i. in the form of Definition 17 (see above). A similar, but sometimes more
convenient form of Theorem 15, is presented below.

Theorem 16 (Central Limit Theorem, Rephrased) Let X1, X2, . . . be a sequence
of i. i. d. r. v. with finite mean α and variance σ2 6= 0. Then the distribution of the r. v.

∑M
i=1 Xi − M · α√

M

approaches the normal distribution, N(0, σ2), as M → ∞.

It is important to note that Theorems 15 and 16 apply to discrete as well as contin-
uous r. v. In the discrete case, X is a discrete r. v. and we are confronted with a series of
discrete r. v. corresponding to different values of M . As M grows, the density function
of the elements of this series converges towards a density function of a continuous vari-
able (namely the normal distribution). This means that if we build a density function
histogram for X , the curve that joins the centers of the upper faces of the rectangles
forming the histogram converges towards a Gaussian curve as M approaches infinity.

Now, let us derive a c. i. for α. By Theorem 15, it follows that the r. v.

Z̃
(−→
X, α

)
=

X − α

σ/
√

M
(5.3)

approaches the standard normal distribution, N(0, 1), as M → ∞. Then, for a given
β ∈ R(0,1) we can choose a non negative value z̃n (β) (index n stands for normal) based
on the limiting distribution N(0, 1), such that:

Prob (N(0, 1) ≤ z̃n (β)) = 1 − β

2
. (5.4)

Then, for sufficiently large M , the following holds:

Prob
(
Z̃
(−→
X, α

)
≤ z̃n (β)

)
≈ 1 − β

2
. (5.5)

2Even though the distribution of X1, X2, . . . is not known.

i

i

i

i

i

i

i

i

5.3. CONFIDENCE INTERVALS 95

Let us note that, in this work, we do not dwell on the dependency between the quality
of the provided approximation and sample size M . This topic is thoroughly discussed
in the literature, and more information on it can be found in [44, 77].

At this point, Equation (5.5) provides us with the formula that resembles a half of
the c. i. However, using the fact that N(0, 1) is a symmetric distribution, and substi-

tuting Z̃
(−→
X, α

)
by Equation (5.3), it can be transformed into:

Prob

(
X − z̃n (β) · σ√

M
≤ α ≤ X +

z̃n (β) · σ√
M

)
≈ 1 − β. (5.6)

Equation (5.6) gives an approximation of the c. i. where equality is reached only when
M goes to infinity. The only problem now is the parameter σ: it is generally unknown
and is usually estimated using an unbiased estimate, given by:

V =

√√√√ 1

M − 1

M∑

i=1

(Xi − X)2, (5.7)

where V
2

is called the sample variance. Using this estimate, the next approximation
of the c. i. for α can be given as:

Prob

(
X − z̃n (β) · V√

M
≤ α ≤ X +

z̃n (β) · V√
M

)
≈ 1 − β. (5.8)

In general, equality in Equation (5.8) is not reached even when M → ∞. The latter
is because the value of σ is substituted with a non-consistent estimate V . However,
the provided approximation of the c. i. is known to be sufficiently accurate for large
values of M . We should stress that in this dissertation we do not discuss the quality of
approximations like the one given by Equation (5.8). The required information about
this matter can be obtained from the text books which were referenced earlier.

In the next part of this section, we consider a special case when we can obtain an
exact c. i. that has a form of Equation (5.8). The sufficient condition for that is to
have i. i. d. r. v. X1, . . . , XM which are normally distributed.

5.3.2 Normally-distributed random variables

Let X be a normally distributed r. v. and
−→
X = (X1, . . . , XM) be a sample of its

observations. Then we can use the following lemma to turn Equation (5.8) into equality.

Lemma 17 If i. i. d. r. v. X1, . . . , XM are normally distributed, the r. v.

X − α

V /
√

M

has the Student’s distribution with M − 1 degrees of freedom, denoted tM−1.

Lemma 17 states that, in case of normally distributed r. v. and V used instead of

σ, r. v. Z̃
(−→
X, α

)
has the Student’s distribution. Thus, by taking z̃s (β), such that:

Prob (tM−1 ≤ z̃s (β)) = 1 − β

2
, (5.9)

i

i

i

i

i

i

i

i

96 CHAPTER 5. PRELIMINARIES

and using it instead of z̃n (β) we avoid approximation (even for finite M) and turn
Equation (5.8) into equality.

Note that these results are important because of two reasons: (i) they are used for
deriving a c. i. in steady-state simulation, see Section 5.5; (ii) for practical applications,
the sample size M is always taken to be finite.

5.3.3 The width of the confidence interval

The width of a c. i. is something we would like to keep as small as possible in order
to reduce the range of possible values for α. Equation (5.6) indicates that for a given
confidence, the larger the sample size M , the smaller is the c. i.. Another way to shrink
the c. i. is reducing the variance σ, for instance by choosing a better sample variance
than the one given by Equation (5.7).

It is also important to note the dependency of the c. i. on z̃n (β) (and z̃s (β)). It is

clear from Equation (5.4) that z̃n (β) = Φ−1
(
1 − β

2

)
, where Φ is the cumulative density

function of the N(0, 1) distribution, also known as the probit function. Figure 5.2 shows
the behavior of z̃n (β) versus 1− β

2 . Notice that for z̃n (β) ≥ 0 we should have 1−β ≥ 0
and z̃n (β) approaches +∞ as β goes to zero. The latter means that the closer 1 − β
is to one, the faster the value of z̃n (β) is increasing. This implies that even a small
increase of a sufficiently large confidence can significantly widen the c. i. The Student’s
tM−1 distribution is symmetric like the normal distribution and approaches it when
M → ∞. Therefore the behavior of z̃s (β) is similar to z̃n (β).

Now, when the main concepts of the c. i. have been discussed, let us move to the
example.

z̃n (β)

1 − β
2

Figure 5.2: The dependency of z̃n (β) from 1 − β
2

i

i

i

i

i

i

i

i

5.4. TERMINATING SIMULATION 97

s2

s3

s1

s2

s3

s
s1

0

s

s

s

Time (discrete)

N

Figure 5.3: Terminating simulation until N steps

5.3.4 An example

In this section, we conclude the discussion about the c. i. by illustrating the use thereof
with the help of the next example.

Example 11 Let us derive a 95% c. i. for the mean of the r. v. IM (Stc
) from Exam-

ple 10. We shall take the same sample as before, for which the p. e. of αc
M is known

to be 0.6. The true variance value of IM (Stc
) is unknown, the sample variance V

computed from the sample is:

V =

√
1

10 − 1
· (6 · (1 − 0.6)2 + 4 · 0.62) =

2√
15

.

The r. v. IM (Stc
) is not known to be normally distributed, and thus we choose z̃n (β)

as for Equation (5.5). Our confidence equals 0.95, thus β = 0.05 and, like for Equa-
tion (5.4), we get:

Prob (N(0, 1) ≤ z̃n (0.05)) = 0.975,

which is satisfied for z̃n (0.05) = 49
25 . Using Equation (5.8) we obtain that with approx-

imately 95% confidence, αc
M belongs to the interval:

[
0.6 −

49
25 · 2√

15√
10

, 0.6 +

49
25 · 2√

15√
10

]
,

that results in [0.27993334, 0.92006666]. We know that αc
M = 0.3 and thus the resulting

interval is correct. Note that in order to reduce the width of the c. i. we can increase
the number of samples M . This will likely improve the value of the p. e., since it is
consistent.

5.4 Terminating simulation

Terminating simulation is a simulation in which the desired measures of system per-
formance are defined relative to the interval of simulated time [0, te] where te is the
instant in the simulation when a specified event e occurs. The desired event e can
be for example a specific time instant N , see Figure 5.3, of reaching a certain system

i

i

i

i

i

i

i

i

98 CHAPTER 5. PRELIMINARIES

0

0

0

8

65

3

73

M = 10

9.00amto tc

#run Sto Stma Stc
IM (Stc

)

1 0 2 0 0

2 0 0 2 1

...
. . .

. . .
. . .

...

10 0 0 1 0

aHere we have tm = 9.00am.

Figure 5.4: Customer observations obtained by simulating the bank model

state. The c. i. approach can be applied to terminating simulations in a straightforward
manner. Consider the following example.

Example 12 In Example 11 the confidence interval for αc
M

3 is derived. The analysis
is done based on the sample of observations of the random variable IM (Stc

) given in
Example 10. So far we did not explain how this sample is obtained. Now it is time to
reveal that this can be done by applying terminating simulations.

Imagine that every morning at to there are no customers waiting for the bank to
open4. We observe how customers come and leave the bank until it closes. The latter
can be done by simulating our DTMC model, starting in state 0. The bank closing
indicates the end of a simulation run, i.e. it is the event that defines the interval of
simulated time [to, tc] for terminating simulation. Figure 5.4 shows the simulation runs
on the bank DTMC (the figure on the left), and the obtained observations (the table on
the right). Recall that IM (Stc

) is a function of the random variable Stc
, so by observing

the latter one we easily get the observations for the former one.

5.5 Steady-state simulation

In steady-state simulation, the measures of interest are defined as limits, as the length
of the simulation goes to infinity. There is no natural event to terminate the simulation,
so the length of the simulation is made large enough to get “good“ estimates of the
quantities of interest. Steady-state simulation generally poses two problems:

1. The existence of a transient phase may cause the estimate to be biased.

2. The simulation runs are long, and normally one cannot afford to carry out many
independent simulations.

These are several methods that allow to cope with these problems to some extent.
Among them are: the method of independent replicas, the batch means method, and
the regeneration method, see [59, 136]. Each of these methods has its advantages and
disadvantages. We have chosen to discuss, and later use, the regeneration method

3The probability of having Cmax = 2 customers in the bank by its closing time at tc = 10.00am.
4As it is assumed in Example 10.

i

i

i

i

i

i

i

i

5.5. STEADY-STATE SIMULATION 99

because it allows to obtain purely independent simulation runs with omitted transient
phase. Although regenerative simulations, when implemented, may not be as efficient
as, say, the batch-means method.

Suppose that in the course of a simulation run one can identify a system state s0

and moments of time t0, t1, . . ., which have the following properties, for all i ∈ N:

I. The distance between the consecutive time moments, di = ti − t(i−1) is an i. i. d.
r. v.;

II. The system state at time ti, i. e. Xti
, equals s0;

III. The behavior of the system after time ti depends only on the state Xti
.

Then we can define the, so called, regeneration points as follows:

Definition 18 The moments of time ti satisfying the conditions I., II., III., with
t0 = 0 and ti = min{t > t(i−1) | t ∈ R ∧ Xt = s0} for all i ∈ N≥1, are called the
regeneration points; the intervals between them are referred to as regeneration cycles.

Let us illustrate the notion of the regeneration points by the following example.

Example 13 In Example 8, we consider the bank modeled as a DTMC. The system
state thus corresponds to the state of the Markov chain. We can identify the moments
of time t0, t2, . . . as the moments when there are zero customers in the bank by the time
it opens. All these time points correspond to the state 0 of the DTMC, and therefore
the property II. is satisfied. Markov chains have a memoryless property which means
that the behavior after time ti depends only on the state occupied at this time. The
latter ensures that the property III. holds as well. By our choice the state occupied at
time ti is 0 for any i ∈ N. This makes di to be i. i. d. r. v., hence ensuring I. It is clear
now that the state 0 identifies the regeneration points for our simulation process.

Even when regeneration points exist, the parameters of a system may be such that it
never reaches them. It only makes sense to talk about the system being regenerative
when an equilibrium exists; then the regenerative cycles are almost surely finite, mean-
ing that di, for all i ∈ N≥1, is finite with probability one. The regenerative method
thus can be safely applied in case of an irreducible Markov chain with finitely many
states.

Example 14 The DTMC shown in Example 8 is irreducible and has a finite number of
states. This implies that a unique steady-state behavior exists. The latter implies that
the regeneration points defined in Example 13 are reachable and that the regenerative
cycle lengths di are a.s. finite.

Consider an irreducible Markov chain {Xt | t ∈ R≥0}, with a finite state space
S. Then for a real-valued function f : S → R, the value α = E [f (X)] has to

be estimated, where Xt
a. s.−−−→
t→∞

X . To apply the regenerative method, the system is

simulated for a number of regeneration cycles. The simulation starts and ends at a
regeneration point, say state s0 in Figure 5.5, going through a sequence of M + 1 such
points: t0 = 0, t1, t2, . . . , tM . Notice that di = ti − t(i−1) (for i > 0) are i. i. d. r. v. Let

Yi =

ti∫

t(i−1)

f (Xt) dt. (5.10)

i

i

i

i

i

i

i

i

100 CHAPTER 5. PRELIMINARIES

s0 s0 s0 s0 s0 s0

. . .t0 tMtM−1t1

d1 dM

.

∀ij : sij 6= s0

s0 → si1 → . . . → sic → s0

Figure 5.5: Regenerative method

(Y1, d1) (Y2, d2) (Y3, d3) (Y4, d4) (Y5, d5)

(1, 3) (2, 9) (0, 3) (3, 9) (1, 6)

Table 5.1: (Yi, di) values of the bank example, DTMC

Clearly, Yi is the accumulated value of function f during the i’th regeneration cycle.
For all i ∈ {1, . . . , M}, Yi are i. i. d. r. v. and [37]:

α =
E [Yi]

E [di]
.

This means that the expected value of the function of the steady state equals the
expected accumulated value of the function on the regeneration cycle, averaged by the
expected length of the regeneration cycle. This suggests the p. e.

A =

∑M
i=1 Yi∑M
i=1 di

=
Y

d
, where Y =

1

M

M∑

i=1

Yi and d =
1

M

M∑

i=1

di. (5.11)

This estimate is consistent, but biased [101]. There are other, less biased, estimates
such as the ’jackknife estimate’ [101], but we do not consider them here because of
their complex structure.

Example 15 For the bank model from Example 8, one of the measures of interest
is αM = E [IM (S∞)], i. e. the probability of having Cmax customers in the bank at
any particular work hour. The DTMC model of the bank, given in Example 10, is
irreducible and has finitely many states, thus the regenerative method can be applied.
Let us take the state 0 to be a regeneration point, as in Example 13. Let us process
M = 5 regeneration cycles as shown in Figure 5.6. States {2, 5, 8} are the ones where
S∞ = Cmax. The observed pairs (Yi, di) are listed in Table 5.1.

The p. e. A then is computed as follows:

A =
1 + 2 + 0 + 3 + 1

3 + 9 + 3 + 9 + 6
=

7

30
≈ 0.23.

The true value of αM is approximately 0.4, as computed by MRMC [84].

i

i

i

i

i

i

i

i

5.5. STEADY-STATE SIMULATION 101

0 65

8 2 3

0 3 6

0 4 7

0 3 8 2 4 1 4 67

1 65

0 1 3 65 7

0

t4 = 24

t2 = 12

t3 = 15

t1 = 3

t0 = 0

t5 = 30

Figure 5.6: Regeneration cycles of the bank example, DTMC

The c. i. for the estimate A is:

Prob

(
A − z̃s (β) · VA

d ·
√

M
≤ α ≤ A +

z̃s (β) · VA

d ·
√

M

)
≈ 1 − β, (5.12)

where V 2
A = V 2

Y − 2 · A · VY,d + A2 · V 2
d and:

V 2
Y =

1

M − 1

M∑

i=1

(Yi−Y)2, V 2
d =

1

M − 1

M∑

i=1

(di−d)2, VY,d =
1

M − 1

M∑

i=1

(Yi−Y)(di−d).

The c. i. (5.12) is based on the r. v.

d ·
√

M · (A − α)

VA
=

∑M
i=0 (Yi − αdi)

VA/
√

M
, (5.13)

which has approximately the Student’s tM−1 distribution5. This justifies why in Equa-
tion (5.12) we use z̃s (β), as in Equation (5.9).

Example 16 Let us compute the 95% c. i. for the p. e. A of Example 15. It is easy to
compute that d = 6, Y = 7

5 , A = 7
30 and thus V 2

Y = 13
10 , V 2

d = 9, V 2
Y,d = 3, which makes

VA =

√
13

10
− 2 · 7

30
· 3 +

49

900
· 9 =

√
39

10
.

For the 0.95 confidence, β equals 0.05. The Student’s t4 distribution yields that:

Prob (t4 ≤ z̃s (0.05)) = 0.975

5Due to Lemma 17 with Xi = Yi−αdi. Note that E [Xi] = 0, and Xi turns out to be approximately
normally distributed because of the way Yi and di are defined.

i

i

i

i

i

i

i

i

102 CHAPTER 5. PRELIMINARIES

is satisfied for z̃s (0.05) = 2.77645. Now the c. i. can be derived as:

[
7

30
− 2.77645 ·

√
39

10

6 ·
√

5
,

7

30
+

2.77645 ·
√

39
10

6 ·
√

5

]
,

from which we finally obtain that with 95% confidence the value of αM belongs to the
interval [0.181638648, 0.285028019].

Recall that αM is approximately 0.4 and thus the derived c. i. is not correct. The
latter highlights the probabilistic aspect of c. i., as for the given example we have 5%
chance of deriving a wrong interval. Nevertheless, the c. i. approach is sound because
deriving, e. g., 100 intervals for αM we can expect to have up to 5 of them to be wrong.

5.6 Discrete-time method for simulating CTMCs

In the paper of A. Hordijk et al. [70], a method for simulating CTMCs using discrete
event simulation is described. The method is aimed at estimating the steady-state
measures. It is based on the fact that the continuity of time influences the point
estimate and the confidence interval only by the exit rates of the CTMC. Therefore, the
authors suggest to perform simulations on the embedded DTMC using the regenerative
method that is explained in the previous section. The p. e. and the c. i. are derived
from specially constructed observations, induced by the observations of the embedded
DTMC. The results of the paper, which will be used in the sequel, are as follows.

Consider an irreducible CTMC {Xt | t ∈ R≥0}, with a finite state space S and
generator matrix Q = (qi,j)i,j∈S . Assume for function f : S → R, the value α =
E [f (X)] has to be estimated where lim

t→∞
(Xt) = X .

For a generator matrix Q construct a probability matrix P that defines an embedded
DTMC with Pn being the r. v. indicating the state of the DTMC at the n’th epoch.

In order to apply the regenerative method for the embedded DTMC, select a fixed
state s0 ∈ S and define regeneration points t0, . . . , tM based on returning to the state
s0. Regeneration simulation on the embedded DTMC then results in the sets of obser-
vations

{
Pt(i−1)

, . . . ,Pti−1

}
for each regeneration cycle i ∈ 1, . . . , M and provides the

basis for the following observations:

Si =

ti−1∑

n=t(i−1)

f (Pn)

qPn

and Ti =

ti−1∑

n=t(i−1)

1

qPn

(5.14)

where qPn
= −qPn,Pn

is the exit rate of the state Pn in the CTMC. The intuition
behind this construction is the following: 1

qPn
is the expected time spent in the state

Pn of the CTMC;
f (Pn)
qPn

is the expected accumulated value of the function f in this

state. Ti is thus the expected time the CTMC spends in the i’th regeneration cycle,
and Si is the expected accumulated value of the function f on this cycle. This is similar
to the definition of Yi in Equation (5.10).

A point estimate A′ of α is then given as:

A′ =
S

T
, where S =

1

M

M∑

i=1

Si and T =
1

M

M∑

i=1

Ti,

i

i

i

i

i

i

i

i

5.6. DISCRETE-TIME METHOD FOR SIMULATING CTMCS 103

like the p. e. of the regenerative method, see Equation (5.11).

Example 17 In Example 15, the p. e. for αM is obtained with the bank modeled as a
DTMC. Let us consider a CTMC model for the same property, by taking λ = 1, β = 3,
and γ = 6. The embedded DTMC for this model is exactly the DTMC of Example 16,
therefore we can reuse the regeneration cycles simulated earlier. The exit rate for the
states {0, 1, 2, 3, 4, 5} is 10, the states 6, 7, 8 have the exit rate 1. To derive the p. e.
and c. i. for αM , we should first obtain observations from the simulated regeneration
cycles of Figure 5.6, using Equation (5.14):

S1 = 1/10 = 0.1, T1 = 2 · 1/10 + 1/1 = 1.2
S2 = 1/1 + 1/10 = 1.1, T2 = 6 · 1/10 + 3 · 1/1 = 3.6
S3 = 0.0, T3 = 2 · 1/10 + 1/1 = 1.2
S4 = 1/1 + 2 · 1/10 = 1.2, T4 = 6 · 1/10 + 3 · 1/1 = 3.6
S5 = 1/10 = 0.1, T5 = 4 · 1/10 + 2 · 1/1 = 2.4.

The p. e. A′ then is computed as follows:

A′ =
0.1 + 1.1 + 0.0 + 1.2 + 0.1

1.2 + 3.6 + 1.2 + 3.6 + 2.4
=

5

24
≈ 0.208.

Assuming that the expected value of the function of the r. v. X is finite, i. e.:

∑

i∈S

| f (i) | ·Prob (X = i) < ∞,

the confidence interval for the estimate A′ is given as:

Prob

(
A′ − z̃s (β) · VA′

T ·
√

M
≤ α ≤ A′ +

z̃s (β) · VA′

T ·
√

M

)
≈ 1 − β (5.15)

where V 2
A′ = V 2

S − 2 · A′ · VS,T + (A′)2 · V 2
T , and:

V
2
S =

1

M − 1

M
X

i=1

(Si − S)2, V
2

T =
1

M − 1

M
X

i=1

(Ti − T)2, VS,T =
1

M − 1

M
X

i=1

(Si − S)(Ti − T).

The confidence interval (5.15) is based on the r. v.

T ·
√

M · (A′ − α)

VA′

which, similarly to the r. v. from Equation (5.13), has the Student’s tM−1 distribution.

Example 18 Let us compute the 95% confidence interval for the p. e. A′ of Exam-
ple 17. It is easy to compute that T = 2.4, S = 0.5, A′ = 5

24 and thus V 2
S = 0.355,

V 2
T = 1.44, V 2

S,T = 0.66. This yields:

VA′ =

√
0.355− 2 · 5

24
· 0.66 +

25

576
· 1.44 =

√
57

20
.

i

i

i

i

i

i

i

i

104 CHAPTER 5. PRELIMINARIES

As in Example 16 we take z̃s (0.05) = 2.77645. Now the c. i. can be computed as:

[
5

24
− 2.77645 ·

√
57

20

2.4 ·
√

5
,

5

24
+

2.77645 ·
√

57
20

2.4 ·
√

5

]
,

from which it follows that with approximately 95% confidence the value of αM belongs to
the interval [0.013033872, 0.403632794]. Unlike in Example 16, this confidence interval
is correct because αM ≈ 0.4. This can be explained by the fact that the confidence
interval width and the point estimate are affected by the exit rates of the CTMC.

5.7 Bernoulli trials

In this section we introduce Bernoulli trials, discuss the c. i. for the mean value of a
Bernoulli distributed r. v., and present the strong law of large numbers for Bernoulli
trials. These results are going to play an essential role in model checking CSL by
discrete event simulation that is discussed in the remainder of this chapter.

Consider a Bernoulli trial with p being the probability of success (S) and 1− p the
probability of failure (F). The probability space for such an experiment can be defined
similarly to how it was done in Example 9. Let r. v. Xb be the following indicator
function:

Xb (ω) =

{
1 if ω = S
0 if ω = F

For an experiment consisting of an infinite sequence of independent Bernoulli trials,
the sample space Ω contains infinite sequences of single trial outcomes. The sigma field
F on Ω is induced by the sets of finite prefixes, i.e.

F = {Fn,C |n ∈ N, C ⊆ {S, F}n} , where

Fn,C = {ω ∈ Ω|C is satisfied on the first n elements of ω}

which provides a way to define the probability measure in a natural way. Let r. v.
ΓS

M : Ω → R, be ΓS
M =

∑M
i=1 Xb

i counting the number of successes in the first M
experiments of a trial sequence ω ∈ Ω. For example, ω1 = (S, F, F, F, . . . , S, S, F, . . .)
is an element of Ω, and ΓS

4 (ω1) = Xb (S) + Xb (F) + Xb (F) + Xb (F) = 1.

The c. i. for the mean value of a Bernoulli distributed r. v. The r. v. Xb is
known to have the following values of mean and variance:

E
[
Xb
]

= p, V ar
[
Xb
]

= p · (1 − p) . (5.16)

On the basis of this knowledge and the Central Limit Theorem 15, taking X = ΓS
M/M ,

one can derive the so called standard Wald c. i. for E
[
Xb
]
:

Prob

X −

z̃n (β) ·
√

X ·
(
1 − X

)
√

M
≤ p ≤ X +

z̃n (β) ·
√

X ·
(
1 − X

)
√

M

 ≈ 1 − β.

(5.17)

i

i

i

i

i

i

i

i

5.7. BERNOULLI TRIALS 105

Note that this c. i. is different from the c. i. given by Equation (5.8). The former
employs the variance given by Equation (5.16), where p is substituted with the sample
mean X, whereas the latter interval uses the standard sample variance as provided by
Equation (5.7).

In [22] the c. i. given by Equation 5.17 is shown to have chaotic coverage properties.
Furthermore, the common textbook prescriptions regarding its safety are indicated to
be misleading and not trustworthy. One of the suggested substitutes for the Wald c. i.
is the Agresti-Coull c. i. given by:

Prob

X̃ − z̃n (β) · Ṽ√

M + (z̃n (β))
2
≤ p ≤ X̃ +

z̃n (β) · Ṽ√
M + (z̃n (β))

2

 ≈ 1 − β (5.18)

where X̃ =
ΓS

M + 0.5 · (z̃n (β))2

M + (z̃n (β))
2 and Ṽ =

√
X̃ ·

(
1 − X̃

)
.

This interval possesses good coverage properties for all values of p and is easy to use
due to its simple form.

The strong law of large numbers for Bernoulli trials [128]. For the r. v. ΓS
M

the strong law of large numbers for Bernoulli trials states that:

Prob

(
lim

M→∞

(
ΓS

M

M

)
= p

)
= 1, (5.19)

which is often referred as an almost-sure (a. s.) convergence and is denoted by
ΓS

M

M

a. s.−−−−→
M→∞

p. Put in a nutshell, Equation (5.19) states that the probability of the

event: {
ω ∈ Ω| lim

M→∞

(
ΓS

M (ω)

M

)
= p

}
,

equals one. Note that the limit is checked on the elements of the sample space, and
therefore in every particular case we deal with a simple convergence of the numerical
sequence.

i

i

i

i

i

i

i

i

106 CHAPTER 5. PRELIMINARIES

i

i

i

i

i

i

i

i

Chapter 6

Model checking CSL

In this chapter we present an application of discrete event simulation to model checking
of probabilistic systems. More specifically, we concentrate on model checking CSL
properties by simulation of finite-state CTMCs. Being statistical in nature, such an
approach cannot guarantee that the verification result is 100% correct. Yet, it allows to
bound the probability of generating an incorrect answer to a verification problem, and,
unlike the numerical approaches1, model checking using simulations does not suffer
from the state-space explosion.

Techniques for model checking CSL (PCTL) properties using simulations have al-
ready been developed. For example in [146], later extended by [144], an algorithm
based on Monte Carlo simulation and hypothesis testing for non-explosive stochastic
discrete-event systems is suggested. In [121], the algorithms of [146] are extended to
statistically verify black-box, deployed systems with a passive observer. Both statis-
tical approaches [146, 121] considered a sub-logic of CSL that excludes steady-state
and unbounded-reachability properties. In [139], the algorithm is extended to deal
with a subclass of unbounded-reachability problems. In [122] the statistical verifica-
tion method of [146] is extended to verify unbounded-reachability properties of CSL (or
PCTL) on finite-state CTMCs (DTMCs), and SMCs. All these approaches presume
an “on-the-fly” model generation.

Contrary to the above mentioned techniques, our approach is based on Monte Carlo
simulation and derivation of confidence intervals. We provide statistical algorithms for
model checking the most interesting CSL (PCTL) operators, such as steady-state,
unbounded-reachability, and time-interval reachability operators. In addition, when
model checking unbounded-reachability or steady-state properties of CSL, we do sim-
ulations on the embedded DTMC. The latter simplifies simulation runs and also lets
the corresponding techniques for model checking of PCTL properties on DTMCs to
be easily derived. In this work we do not consider nested formulas, and working with
finite-state systems, we assume that we can deduce the structure of the Markov chain.
For instance we can detect bottom strongly connected components of the Markov chain.

Note that, in this chapter we rely on the preliminary material introduced in Chap-
ters 1 and 5. Also, the comparative experimental study of the model-checking tech-
niques derived below and the ones based on hypothesis testing is provided in Chapter 7.

1Numerical model checking is carried out by symbolic and numerical methods.

107

i

i

i

i

i

i

i

i

108 CHAPTER 6. MODEL CHECKING CSL

The remainder of this chapter is organized as follows. In Section 6.1 we explain
the way of applying confidence intervals to model-checking probabilistic formulas of
CSL. Similar to numerical model checking, the procedure falls into two part: (i) de-
riving a c. i. for the probability value; (ii) checking the c. i. against the probability
constraint provided by the formula. Section 6.2 deals with the unbounded-reachability
operator, using confidence intervals and terminating simulations. Then this technique,
in combination with the approach of A. Hordijk et al., is applied to model checking
of steady-state properties in Section 6.3. Later, in Section 6.4, we discuss an applica-
tion of terminating simulation and c. i. to model checking of time-bounded reachability
properties.

6.1 Confidence intervals and model checking

Let us consider the verification of the three most important operators of CSL: the
unbounded-until operator P⊲⊳ b (A U G), the steady-state operator S⊲⊳ b (G), and the
time-interval until operator P⊲⊳ b

(
A U[t1,t2] G

)
, with t1, t2 ∈ R≥0 and t1 ≤ t2. We

assume that ⊲⊳∈ {<,≤, >,≥} and, since we do not consider nested formulas, both
A and G are treated as sets of states, referred to as allowed states and goal states,
respectively.

In order to verify the formulas P⊲⊳ b (A U G), P⊲⊳ b

(
A U[t1,t2] G

)
or S⊲⊳ b (G), we

intend to apply the following procedure. First, for every initial state s0 ∈ S the
probability p̃ (= Prob (s0, A U G), = Prob

(
s0, A U[t1,t2] G

)
or = Prob∞ (s0, G)) is

estimated in a form of the c. i. Second, the c. i. of p̃ is checked against the probability
constraint ⊲⊳ b, to assess whether s0 satisfies the given formula or not.

Leaving the task of computing the c. i. of p̃ for later, further we concentrate on the
second step of the outlined approach. There are two important reasons for that. First,
this procedure should be universal for all considered operators. Second, because of the
probabilistic nature of the c. i., the procedure should guarantee the correctness of the
result with some (predefined) confidence. The latter will imply certain constraints on
the way the c. i. of p̃ has to be derived.

The remainder of this section is organized in the following way. We begin with
Section 6.1.1 that discusses a general idea of comparing the c. i. against the probability
constraint. In this section we derive a condition that the c. i. has to satisfy in order to
guarantee a predefined confidence of the procedure’s result. Further, in Section 6.1.2 we
present a complete algorithm for comparing the c. i. against the probability constraint.
Section 6.1.3 briefly mentions the differences between the suggested algorithm and the
approach based on hypothesis testing.

6.1.1 Confidence of model checking results

For simplicity, instead of the c. i. let us first consider two bounds Al, Ar ∈ R≥0 such
that we know that Al ≤ p̃ ≤ Ar. Since the value of p̃ is unknown, assessing whether
p̃ ⊲⊳ b holds can be done based on the bounds Al and Ar in a straightforward manner.
Clearly, such an assessment, for all allowed ⊲⊳ , is possible only if b 6∈ [Al, Ar] and
thus the check yields three possible answers: positive (TRUE), negative (FALSE), or
“Don’t know” (NN).

i

i

i

i

i

i

i

i

6.1. CONFIDENCE INTERVALS AND MODEL CHECKING 109

Let us extend the reasoning above to the situation when the bounds for p̃ are
provided in the form of the c. i. Then, for a given confidence ξ and sample size M ∈ N≥2,
we have:

Prob
(
Al

(−→
X
)
≤ p̃ ≤ Ar

(−→
X
))

≈ ξ. (6.1)

Equation (6.1) guarantees that the sampled intervals
[
Al

(−→
X
)

, Ar

(−→
X
)]

contain p̃

in about 100 ·ξ % of the cases. Note that, in this work we do not dwell on the quality of
the c. i. given by Equation (6.1). In other words, we assume that the sample size M is
large enough2 to provide an accuracy that allows not to influence our model-checking
techniques.

Now, let us concentrate on two distinct problems that arise when we attempt to
use the c. i. of p̃ in order to decide whether or not p̃ ⊲⊳ b holds:

• Like for the fixed bounds Al and Ar, if the sampled c. i. contains b then the
solution to the model-checking problem is unknown. Thus, similar to model
checking by means of hypothesis testing [144, 121, 122], the analysis based on the
c. i. is inconclusive if b = p̃. Clearly, in this case with probability ξ we sample a
correct c. i. that contains both p̃ and b.

• Due to the probabilistic nature of the c. i., the result of the comparison between
the c. i. and constraint ⊲⊳ b becomes probabilistic itself. This means that, in
order to give a correct answer to p̃ ⊲⊳ b, it is not enough to check the c. i. of p̃
against ⊲⊳ b. In addition, we have to provide a confidence with which the result
of such comparison provides a correct answer to p̃ ⊲⊳ b.

To avoid the first problem, from now on we will assume that we only consider values
of b such that |b − p̃| = δ with δ ∈ R>0. The solution to the second problem is not so
straightforward and requires a deeper understanding of the situation.

The borders of the sampled c. i. can vary from simulation to simulation. The latter
implies that the confidence of having a correct answer to p̃ ⊲⊳ b may be unknown, even
if we know with what probability every other sampled interval contains p̃. Consider
any fixed confidence ξ and a sample size M then we can always have b being chosen
so close to p̃ that in many cases the sampled c. i. will contain b. Then the % of NN
answers for p̃ ⊲⊳ b is going to be high (up to 100 · ξ %) making the % of correct definite
answers comparable to the % of incorrect definite answers. Fortunately, this problem
can be solved by sequential confidence intervals.

Note that in this work we do not consider the proper sequential c. i. derivation such
as discussed in [44, 30]. Instead, we use a naive approach where we simply increase the
sample size until the derived c. i. becomes narrow enough. The latter can cause the
decrease of the confidence levels, although this was not observed in our experiments
presented in Chapter 7. In the following we assume that the suggested sequential
procedures do not change the confidence levels.

Assume that we have a fixed confidence ξ and a variable sample size M . The width
of the c. i. depends on M , namely the larger the sample the tighter is the c. i. (cf.

Section 5.3). If we compute the c. i. of p̃ by increasing M until Ar

(−→
X
)
−Al

(−→
X
)

< δ

then we guarantee that the correct c. i. does not contain b. This means that at least3

2For more details see Section 5.3.
3An incorrect c. i. of ep can still result in the correct answer to ep ⊲⊳ b.

i

i

i

i

i

i

i

i

110 CHAPTER 6. MODEL CHECKING CSL

in 100 · ξ % cases p̃ ⊲⊳ b will be provided with a definite and correct answer. As a
consequence, the combined percentage of incorrect and “Don’t know” answers should
not exceed 100 · (1 − ξ) %.

In the solution above, δ is defined using p̃ which is unknown. Therefore, we suggest
to use a user-defined estimate of δ which we denote as δ′ ∈ R>0. This value has to
be guessed and a good guess is the one for which δ′ ≤ δ holds. The latter cannot be
checked exactly but by repeating simulations one can empirically evaluate the quality
of the given δ′, since for a proper value the combined percentage of incorrect and NN
answers should not exceed 100 · (1 − ξ) %.

6.1.2 Checking the c. i. against the probability constraint

Algorithm 3 checkBoundVSConfInt
(
⊲⊳ , b,

[
Al

(−→
X
)

, Ar

(−→
X
)])

Require: Ar

(−→
X
)
− Al

(−→
X
)

< δ

1: RESULT := NN
2: if ⊲⊳∈ {≤} then /*Case 1*/

3: if b ≥ Ar

“−→
X
”

then

4: RESULT := TRUE

5: else if b < Al

“−→
X
”

then

6: RESULT := FALSE

7: end if
8: else if ⊲⊳∈ {<} then /*Case 2*/

9: if b > Ar

“−→
X
”

then

10: RESULT := TRUE

11: else if b ≤ Al

“−→
X
”

then

12: RESULT := FALSE

13: end if
14: else if ⊲⊳∈ {≥} then /*Case 3*/

15: if b ≤ Al

“−→
X
”

then

16: RESULT := TRUE

17: else if b > Ar

“−→
X
”

then

18: RESULT := FALSE

19: end if
20: else if ⊲⊳∈ {>} then /*Case 4*/

21: if b < Al

“−→
X
”

then

22: RESULT := TRUE

23: else if b ≥ Ar

“−→
X
”

then

24: RESULT := FALSE

25: end if
26: end if
27: return RESULT

1. Case: ≤ b

Al

(−→
X
)

Ar

(−→
X
)

NNFALSE TRUE

b

2. Case: < b

Al

(−→
X
)

Ar

(−→
X
)

NNFALSE TRUE

b

3. Case: ≥ b

Al

(−→
X
)

Ar

(−→
X
)

NNTRUE FALSE

b

4. Case: > b

Al

(−→
X
)

Ar

(−→
X
)

NNTRUE FALSE

b

Now let us consider Algorithm 3 that checks the c. i. of p̃ against the probability
constraint ⊲⊳ b. This algorithm has three parameters, the binary operator ⊲⊳ , the
probability bound b, and the c. i. of p̃. The result can be one of the three possible

i

i

i

i

i

i

i

i

6.2. UNBOUNDED-UNTIL OPERATOR 111

outcomes TRUE , FALSE , or NN . The precondition Ar

(−→
X
)
− Al

(−→
X
)

< δ ensures

that the confidence level of the definite answers given by the algorithm is at least ξ.

Assuming a correct c. i., i. e. Al

(−→
X
)

≤ p̃ ≤ Ar

(−→
X
)
, consider Algorithm 3 for

the case of ⊲⊳ equal to ≤. This corresponds to lines 2 through 7. First, on line 3 it

is tested whether Ar

(−→
X
)
≤ b. If this holds then, since we know that p̃ ≤ Ar

(−→
X
)
,

we can conclude that p̃ ≤ b and the algorithm’s outcome is TRUE . Similarly, if

b < Al

(−→
X
)

then we have p̃ > b and the result is FALSE . In the remaining case,

i. e. Al

(−→
X
)
≤ b < Ar

(−→
X
)

we cannot provide any definite answer and the algorithm

returns NN .
The illustrations along the algorithm correspond to the if -cases marked in the

pseudo code by comments. These pictures provide an extra insight into the algorithm’s
decision process, i. e. when this or that value is returned depending on the binary
operator ⊲⊳ and the position of b with respect to the c. i. borders. The dash lines
denote intervals for b in which Algorithm 3 returns a particular value. Here we use a

cornered line to denote inclusion of Al

(−→
X
)

or Ar

(−→
X
)

into the interval, and rounded

line to denote the exclusion.
At this point, the way of comparing the sampled c. i. of p̃ to a probability con-

straint and the necessity of ensuring Ar

(−→
X
)
− Al

(−→
X
)

< δ for the proper confidence

levels are clear. Further, we briefly mention the differences between Algorithm 3 and
the approach based on hypothesis testing. The remainder of this chapter will be de-
voted to deriving the c. i. for probabilities Prob (s0, A U G), Prob

(
s0, A U[t1,t2] G

)
and

Prob∞ (s0, G), and specifying the complete model checking procedures.

6.1.3 Confidence intervals and hypothesis testing

Let us note that the algorithm presented in Section 6.1.2 implements criteria different
from the acceptance criteria used in model checking by hypothesis testing [144, 122].
As a result we have two main differences: (i) our approach allows for the indefinite
answer (NN); (ii) we do not have an explicit notion of the indifference region.

The first difference might not allow for a straightforward way of handling nested
properties. Nevertheless, the use of undecided results is sound and has been suggested
for numerical model checking in [60] and for hypothesis testing in Section 5 of [142].

The second difference, see Section 7.1, requires us to use c. i. of the width < δ,
whereas – under the same conditions – in hypothesis testing we would have to use the
indifference region of the width less than only 2 · δ. This can cause our model checking
algorithms to require more samples than needed for the ones based on hypothesis
testing. An alternative approach to comparing the c. i. of p̃ against the probability
constraint ⊲⊳ b was discussed in Section 4.2 of [142]. That procedure does not allow
for an indefinite answer but was shown to require the c. i. of the width up to 2 · δ.

6.2 Unbounded-until operator

Let us first recall the numerical model checking of P⊲⊳ b (A U G) on a CTMC (S, Q, L).
It consists of computing the probabilities Prob (s0, A U G) for all states s0 ∈ S, and

i

i

i

i

i

i

i

i

112 CHAPTER 6. MODEL CHECKING CSL

then selecting the states for which the probability bound ⊲⊳ b is satisfied. More pre-
cisely, as described in Section 1.2.2, the model-checking procedure typically looks as
follows:

1. States G and I = S \ (A ∪ G) are made absorbing, resulting in a new generator
matrix Q [I ∪ G].

2. An extra step may be taken to make BA,G = {BSCCs in A \ G} states absorbing.
This is done because the unbounded until formula is not satisfiable in states from
BA,G . This step results in the generator matrix QB.

3. Since time is of no importance, the embedded DTMC is considered; its probability
matrix is denoted PB.

4. A system of linear equations is solved to obtain Prob (s0, A U G) for all states
s0 ∈ S at once.

5. Finally, states s0 ∈ S are selected such that Prob (s0, A U G) ⊲⊳ b holds.

When using simulations, we utilize the first three steps of the above mentioned pro-
cedure. Then two important remarks are in order. First, in the DTMC represented
by the matrix PB the state space is divided into three disjoint parts: the “allowed”
transient states A \ (G ∪ BA,G), the “bad states” BA,G ∪ I, and the “goal states” G.
The latter two sets of states are absorbing. Second, because we are only interested
in the probability of reaching a G state in the long run, we can safely discard all the
self-loops, if any, of the transient states in the embedded DTMC PB. In case the self
loop of a state s ∈ A \ (G ∪ BA,G) is removed, the probabilities on the remaining out-
going transitions of s should be renormalized in order to form a proper distribution.
Due to the first remark, we conclude that the DTMC represented by PB is absorbing.
The second one provides us with a way to optimize simulation runs, as excluding the
self-loops on transient states will reduce the length of simulation runs.

When estimating Prob (s0, A U G) using simulations, we are interested in the long-
run measure, namely an estimate of the probability to be in some G state in the long
run, when starting in s0 ∈ A\(G ∪ BA,G). Long-run simulation of an absorbing Markov
chain, doing terminating simulations until absorption, is not always practical, because
in case of a slowly convergent Markov chain such simulation may take an arbitrary
long time. Instead, we first bound the probability Prob (s0, A U G) by transient prob-
abilities. Then we use terminating simulation until a time stamp N ∈ N in order to
provide the c. i. for the probabilities bounding Prob (s0, A U G). In the end, we use
these c. i. to derive a c. i. for Prob (s0, A U G).

All our simulation runs start in state s0 and thus the probability measure we use
is conditional. We denote a state of the discrete time process corresponding to the
embedded DTMC PB as {PN | N ∈ N}, where PN is the r. v. indicating the state

of the DTMC at the N ’th epoch. Sampling the r. v. PN we form a sample
−→
PN =(

P1
N , . . . ,PM

N

)
of M ∈ N≥2 independent observations.

The rest of this section is organized as follows. In Section 6.2.1 we show how
the probability Prob (s0, A U G) can be bounded (from above and below) by tran-
sient probabilities. The latter turn out to be the mean values of Bernoulli-distributed

i

i

i

i

i

i

i

i

6.2. UNBOUNDED-UNTIL OPERATOR 113

random variables. Then, in Section 6.2.2 we show how these probabilities can be es-
timated using both standard and Agresti-Coull confidence intervals. Since the c. i. of
Prob (s0, A U G) is derived as a composition of the c. i. for transient probabilities, in
Section 6.2.2 we introduce a notion of dependent c. i. This notion is used in Section 6.2.3
that is devoted to deriving the c. i. of Prob (s0, A U G). As we will see, there are sev-
eral c. i. available for Prob (s0, A U G). In order to ensure a desired level of confidence,
these intervals are based on different numbers of samples. This allows to choose the
best between the available c. i. of Prob (s0, A U G) and this is done in Section 6.2.4.
Further, in Section 6.2.5 we analyze the behavior of the chosen c. i. with respect to
its parameters, such as the sample size and the depth of terminating simulation. This
analysis helps to devise an efficient model-checking algorithm for P⊲⊳ b (A U G) that is
presented in Section 6.2.6.

6.2.1 Bounding Prob (s0, A U G) by transient probabilities

Below, we provide a way of bounding the probability Prob (s0, A U G) with transient
probabilities which can be represented as the mean values of Bernoulli-distributed
random variables. For that, let us consider the following indicator function with S′ ⊆ S:

IS′ (s) =

{
1 if s ∈ S′

0 else

For any N ∈ N and k ∈ N = {{g}, {b}, {t}, {g, t}, {b, t}}, let us define the r. v. fk (PN)
and its mean value αN

k as follows4:

fg (PN) = IG (PN), αN
g = E

[
fg (PN)

]
,

ft (PN) = IA\(G∪BA,G) (PN), αN
t = E [ft (PN)],

fb (PN) = IBA,G∪I (PN), αN
b = E [fb (PN)],

fg,t (PN) = I(A\BA,G)∪G (PN), αN
g,t = E

[
fg,t (PN)

]
,

fb,t (PN) = IS\G (PN), αN
b,t = E

[
fb,t (PN)

]
.

Clearly, fk (PN) is a Bernoulli-distributed r. v. which results in 1 with probability αN
k

and in 0 with probability 1−αN
k . Notice that the mean values above define probabilities

to be at epoch N in: αN
g – a goal state, αN

t – a transient state, αN
b – a bad state, αN

g,t

– a goal or a transient state, αN
b,t – a bad or a transient state. Let us define:

lim
N→∞

(
αN

k

)
= αk,

then αg is our measure of interest, because αg = Prob (s0, A U G). The dependency
of αg on s0 is implicit via the conditional probability measure.

Proposition 18 below provides us with several useful facts, such as that the values
αN

g , αN
b and αN

t (αg and αb) form a distribution, and that the probability αN
g,t is the

sum of probabilities αN
g and αN

t , as the goal and transient states are disjoint.

4We mostly omit the curly braces in our notation and write, e. g., αN
b

instead of αN
{b}

.

i

i

i

i

i

i

i

i

114 CHAPTER 6. MODEL CHECKING CSL

Proposition 18 For any N ∈ N:

αN
g + αN

b + αN
t = 1, αg + αb = 1,

αN
g,t = αN

g + αN
t , αN

b,t = αN
b + αN

t , αN
g,b = αN

g + αN
b .

Proof Straightforward. �

Proposition 19 bounds the value of αg by the values of αN
k (with k ∈ N). In other words,

this proposition gives us a way to bound the long-run probability Prob (s0, A U G) by
transient probabilities.

Proposition 19 For any N ∈ N the inequality Al ≤ αg ≤ Ar holds for any:

Al ∈
{
αN

g , 1 −
(
αN

b + αN
t

)
, 1 − αN

b,t

}
and Ar ∈

{
αN

g,t, αN
g + αN

t , 1 − αN
b

}
.

Proof See the proof of Proposition 43 from Appendix C.1. �

Notice that for any allowed choice of Al and Ar, Proposition 19 provides us with
exactly the same inequality. This is not a coincidence because due to Proposition 18
we have:

αN
g = 1 −

(
αN

b + αN
t

)
= 1 − αN

b,t, and αN
g,t = αN

g + αN
t = 1 − αN

b .

The difference in the power of different Al and Ar is revealed only when they are
used in combination with the c. i. of αN

k , with k ∈ N . The latter happens due to non-
linearity of the sample variance and will be explained later in more detail. Further,
Example 19 illustrates the result of the proposition.

Example 19 Figure 6.1 gives an example DTMC with the values of αN
g , αN

b , αN
t , αN

g,t

and αN
b,t for several values of N . The self-loop on the transient state is not eliminated

(although it could be) for increasing the illustrative value of this example.
As it is shown in Figure 6.1, αg = 2

3 , and thus for N = 3, applying Proposition 19

with Al = αN
g and Ar = αN

g + αN
t , we get the following inequality 21

32 ≤ 2
3 ≤ 21

32 + 1
64 .

6.2.2 Deriving a c. i. of αN
k

In this section we concentrate on two main things. First, we provide c. i. for αN
k . Sec-

ond, using the idea of probabilistic events, we define a notion of dependent confidence
intervals. The latter is used in the next section where the c. i. of αN

k are employed to
produce the c. i. of αg.

For some confidence 1− β and a sample
−→
PN of M ∈ N≥2 independent observations

we intend to provide two c. i. of αN
k , based on observation Xi = fk

(
Pi

N

)
. These c. i.

will have the form:

Prob
(
Ak

l

(−→
PN

)
≤ αN

k ≤ Ak
r

(−→
PN

))
≈ 1 − β, (6.2)

and differ by differently defined Ak
l

(−→
PN

)
and Ak

r

(−→
PN

)
. Before starting with the

intervals, let us introduce the following definition.

i

i

i

i

i

i

i

i

6.2. UNBOUNDED-UNTIL OPERATOR 115

G = {1}
A = {0}

1
4

1
4

0

1.0 1.0

1

1
2

2

N αN
g αN

b αN
t αN

g,t αN
b,t

0 0.0 0.0 1.0 1.0 1.0

1 1
2

1
4

1
4

3
4

1
2

2 5
8

5
16

1
16

11
16

3
8

3 21
32

21
64

1
64

43
64

11
32

.

∞ 2
3
a 1

3 0 2
3
b 1

3

a lim
N→∞

`
αN

g

´
= αg = 2

3

b lim
N→∞

“
αN

g,t

”
= αg = 2

3

Figure 6.1: Values of αN
g , αN

b , αN
t , αN

g,t and αN
b,t on a simple DTMC, with s0 = 0.

Definition 19 For any k ∈ N and a sample
−→
PN of size M ∈ N≥1, let Γk

N =

Γk
(−→
PN

)
=
∑M

i=1 fk

(
Pi

N

)
.5

Clearly, Γk
N defines the number of k-type observations in the sample

−→
PN . For instance,

Γg
N is the number of goal states in the sample

−→
PN . Below we show that the provided

interval borders Ak
l (.) and Ak

r (.) can be seen as functions of Γk
N , i.e.

A
k
l

“−→
PN

”

= A
k
l

“

Γk
“−→
PN

””

= A
k
l

“

Γk
N

”

, A
k
r

“−→
PN

”

= A
k
r

“

Γk
“−→
PN

””

= A
k
r

“

Γk
N

”

. (6.3)

Note that Ak
l (.) and Ak

r (.), seen as functions of Γk
N , will not depend on k at all,

nevertheless we prefer to keep this index.
Below, we consider two c. i. of αN

k . The first one is a standard c. i. and it will
be used for our technical proofs due to its simple structure. The second one is the
Agresti-Coull c. i. We will use it in the experiments because it is known to provide
better accuracy than the standard c. i.

The standard confidence interval

In order to provide a c. i. for αN
k we can simply use the general c. i. given by Equa-

tion (5.8) (cf. Section 5.3):

Ak
l

(−→
PN

)
= X

N

k − z̃n (β) · V N

k√
M

, Ak
r

(−→
PN

)
= X

N

k +
z̃n (β) · V N

k√
M

, (6.4)

where the following lemma provides us with the compact representation of X
N

k and

V
N

k in terms of Γk
N and M .

5 Note that, unlike in Section 5.7, the lower index (N) of Γk
N

defines the simulation depth.

i

i

i

i

i

i

i

i

116 CHAPTER 6. MODEL CHECKING CSL

Lemma 20 For a sample
−→
PN =

(
P1

N , . . . ,PM
N

)
of M ∈ N≥1 independent observations,

Xi = fk

(
Pi

N

)
, with k ∈ N , and X

N

k with V
N

k computed by Equations (5.1) and (5.7)
correspondingly, the following holds:

X
N

k =
Γk

N

M
, V

N

k =

√
Γk

N ·
(
M − Γk

N

)

M · (M − 1)
=

√
X

N

k ·
(
M − Γk

N

)

M − 1
. (6.5)

Proof See the proof of Lemma 46 from Appendix C.1. �

The c. i. defined by the bounds in Equation (6.4) is rather simple and thus will be
used for technical proofs in the subsequent parts of this chapter. The interval, though,
is not perfect for practical applications (in our settings) because its general nature does
not take into account, e. g., the distribution of the r. v. fk (PN).

The Agresti-Coull confidence interval

As it was noted earlier, fk (PN) is a Bernoulli-distributed r. v. Therefore, we can employ
the Agresti-Coull c. i. (cf. Equation (5.18) of Section 5.7) specifically designed for the
case of Bernoulli trials, for that we should take:

Ãk
l

(−→
PN

)
= X̃N

k − z̃n (β) · Ṽ N
k√

M + (z̃n (β))2
, Ãk

r

(−→
PN

)
= X̃N

k +
z̃n (β) · Ṽ N

k√
M + (z̃n (β))2

(6.6)

where X̃N
k =

Γk
N + 0.5 · (z̃n (β))

2

M + (z̃n (β))
2 and Ṽ N

k =

√
X̃N

k ·
(
1 − X̃N

k

)
.

It is important to note that, unless stated otherwise, the results proven in Sec-
tions 6.2.3 to 6.2.5 hold for the c. i. provided by both Equation (6.4) and (6.6). The
latter comes without any proof but is trivial to check.

Symmetric confidence intervals and events

The c. i. given by Equation (6.2) can be seen as probabilities of some events. Let us
consider the following definition.

Definition 20 For any k ∈ N , and a sample
−→
PN of M ∈ N≥2 independent observa-

tions, define the following events:

Ek = Ak
l

(−→
PN

)
≤ αN

k ≤ Ak
r

(−→
PN

)
, Ek

l = Ak
l

(−→
PN

)
≤ αN

k , Ek
r = αN

k ≤ Ak
r

(−→
PN

)
.

For any k ∈ N , the c. i. of αN
k defined by Equation (6.2), we have:

Prob
(
Ek
)
≈ 1 − β, Prob

(
Ek

l

)
≈ 1 − β

2
, Prob

(
Ek

r

)
≈ 1 − β

2
, (6.7)

where the last two hold due to the use of symmetric c. i., i. e. we have:

Prob
(
αN

k < Ak
l

(−→
PN

))
= Prob

(
Ak

r

(−→
PN

)
< αN

k

)
≈ 1 − β

2
,

due to the way the c. i. defined by Equation (5.6) is derived from Equation (5.5).
Since c. i. can be seen as probabilities of events we may talk about dependency of

these events, i.e. about the dependency of the c. i.

i

i

i

i

i

i

i

i

6.2. UNBOUNDED-UNTIL OPERATOR 117

Definition 21 For two c. i. of αN
k and αN

l with k, l ∈ N , derived using Equation (6.2),
we say that they are dependent iff the events Ek and El are dependent.

The notion of dependency between c. i. becomes important when deriving the c. i. of
αg because the latter involves computation of joint probabilities for several c. i.

6.2.3 Deriving c. i. of Prob (s0, A U G)

Our ultimate goal now is to provide a c. i. for αg using the c. i. of αN
k , with k ∈ N .

The latter can be done employing Proposition 19 and Equation (6.2). To be more
precise, the c. i. of αg can be deduced as a composition of the c. i. for αN

k . Using the
information provided in the previous section, it is easy to see that this composition can
be represented as a joint probability of several probabilistic events. We illustrate this
idea be means of Example 20, but first we start with the following definition.

Definition 22 For a, b, c ∈ R[0,1] if a ≈ b and c ≥ a then we write c � b.

Example 20 Consider the c. i. of αN
g and αN

t , and Proposition 19 with Al = αN
g and

Ar = αN
g + αN

t , it is easy to conclude that:

Eg ∧ Et
r =⇒ Ag

l

(−→
PN

)
≤ αg ≤ Ag

r

(−→
PN

)
+ At

r

(−→
PN

)
. (6.8)

The latter implies:

Prob
(
Ag

l

(−→
PN

)
≤ αg ≤ Ag

r

(−→
PN

)
+ At

r

(−→
PN

))
≥ Prob

(
Eg ∧ Et

r

)
(6.9)

where Prob (Eg ∧ Et
r) is an unknown joint probability, and ≥ is used, because the prob-

ability of the consequent event is always greater or equal than the probability of the
antecedent event, see Equation (6.8).

Clearly, if events Eg and Et
r (see the example above) are independent then by using

Equations (6.7) the joint probability Prob (Eg ∧ Et
r) can be easily computed as follows:

Prob
(
Eg ∧ Et

r

)
= Prob (Eg) · Prob

(
Et

r

)
≈ (1 − β) ·

(
1 − β

2

)
.

In the remainder of this section we concentrate on the following three topics. First,
we show that the events such as Eg and Et

r are dependent, if based on the same set of

r. v. The latter, in case of simulation, is equivalent to using the same sample
−→
PN for

deriving the c. i. of αN
g and αN

t . Second, we derive several c. i. of αg which, keeping

in mind the dependency between the c. i. of αN
k , are forced to be based on several

independent samples. Third, we discuss a possibility of relaxing the condition on using
independent samples in case of sufficiently large sample sizes.

Dependency between the confidence intervals for αN
k

Notice that for any given k ∈ N the events Ek and El are dependent iff any two events
from the sets

{
Ek, Ek

l , Ek
r

}
and

{
El, El

l , E
l
r

}
, respectively, are dependent. Example 20

shows that it is vital to have the c. i. of αN
k and αN

l pairwise independent for any

i

i

i

i

i

i

i

i

118 CHAPTER 6. MODEL CHECKING CSL

k, l ∈ N . Below we show the dependency of these c. i. when they are derived from the

same sample
−→
PN of independent observations. This is done under the assumptions of

αN
k 6∈ {0, 1} which is not significant because in practice the values of αN

k are unknown.
For any finite sample size M ∈ N≥3, Proposition 21 below proves that the above-

mentioned c. i. are dependent. Note that in practice the sample size M is taken to be
significantly larger than 3.

Proposition 21 Let
−→
PN =

(
P1

N , . . . ,PM
N

)
be a sample of M ∈ N≥3 independent

observations. For any k, l ∈ N , k 6= l and αN
k , αN

l 6∈ {0, 1} the c. i. of αN
k and αN

l are
dependent.

Proof See the proof of Proposition 54 from Appendix C.1.1. �

The c. i. are derived using Central Limit Theorem 15 where the limit of M → ∞ is
considered. Therefore, if the c. i. are independent in the limit, we could say that they
are “approximately independent”, for sufficiently large values of M . Thus, by means of
Proposition 22 below, we also prove the dependency of the c. i. in the limit. The latter
is done for the case of known variance σN

k of the r. v. fk (PN), where k ∈ N . The
proof is based on the multi-dimensional Central Limit Theorem 55 (Appendix C.1.1)
and indicates that the dependency between the c. i. is also preserved when the sample
variances V N

k are used.

Proposition 22 Let
−→
PN =

(
P1

N , . . . ,PM
N

)
be a sample of M ∈ N≥2 independent

observations, and αN
k 6∈ {0, 1} for any k ∈ N . The c. i. of αN

k and αN
l for any k, l ∈ N

and k 6= l, derived using Equation (6.2) with σN
k = V ar

[
fk

(
Pi

N

)]
used in place of

V
N

k , are dependent in the limit of M → ∞.

Proof See the proof of Proposition 59 from Appendix C.1.1. �

Assume, there are two independent samples
−→
PN and

−→
P′

N . Due to the independence
of the samples we can conclude that there is no dependency between the c. i. under
consideration, if each of the c. i. in the pair is based on its own sample. For example,

the c. i. of αN
g and αN

t are independent if the c. i. of αN
g is based on

−→
PN and the c. i. of

αN
t on

−→
P′

N . Therefore, we suggest to use several independent samples when deriving
the c. i. of αg. The only drawback is that we have to do more simulation runs, but
later we will see that for sufficiently large values of M this requirement can be relaxed.

Confidence intervals for αg

The following theorem gives us the c. i. of αg, imposed by Proposition 19.

Theorem 23 For independent samples
−→
PN ,

−→
P′

N and
−→
P′′

N of M ∈ N≥2 independent

i

i

i

i

i

i

i

i

6.2. UNBOUNDED-UNTIL OPERATOR 119

observations each, and the c. i. of αN
k for all k ∈ N with confidence 1 − β, we have:

Prob
“

A
g

l

“−→
PN

”

≤ αg ≤ A
g
r

“−→
PN

”

+ A
t
r

“−→
P′

N

””

� (1 − β) ·

„

1 −
β

2

«

, (6.10)

Prob
“

1 −
“

A
b
r

“−→
PN

”

+ A
t
r

“−→
P′

N

””

≤ αg ≤ 1 − A
b
l

“−→
PN

””

� (1 − β) ·

„

1 −
β

2

«

, (6.11)

Prob
“

A
g

l

“−→
PN

”

≤ αg ≤ A
g,t
r

“−→
P′

N

””

�

„

1 −
β

2

«2

, (6.12)

Prob
“

1 − A
b,t
r

“−→
PN

”

≤ αg ≤ 1 − A
b
l

“−→
P′

N

””

�

„

1 −
β

2

«2

, (6.13)

Prob
“

A
g

l

“−→
PN

”

≤ αg ≤ 1 − A
b
l

“−→
P′

N

””

�

„

1 −
β

2

«2

, (6.14)

Prob
“

1 − A
b,t
r

“−→
PN

”

≤ αg ≤ A
g,t
r

“−→
P′

N

””

�

„

1 −
β

2

«2

, (6.15)

Prob
“

1 −
“

A
b
r

“−→
P′′

N

”

+ A
t
r

“−→
P′

N

””

≤ αg ≤ A
g
r

“−→
PN

”

+ A
t
r

“−→
P′

N

””

�

„

1 −
β

2

«3

, (6.16)

Prob
“

1 −
“

A
b
r

“−→
P′′

N

”

+ A
t
r

“−→
PN

””

≤ αg ≤ A
g,t
r

“−→
P′

N

””

�

„

1 −
β

2

«3

, (6.17)

Prob
“

1 − A
b,t
r

“−→
P′′

N

”

≤ αg ≤ A
g
r

“−→
PN

”

+ A
t
r

“−→
P′

N

””

�

„

1 −
β

2

«3

. (6.18)

Proof See the proof of Theorem 60 from Appendix C.1.2. �

The right-hand side of each of these c. i. is the confidence, called ξ. The way these
c. i. are derived is illustrated by Example 20. In the following, with respect to the c. i.
given by Theorem 23, we will discuss two important questions: (i) is it possible to use

just one sample in these c. i., i.e. to take
−→
PN =

−→
P′

N =
−→
P′′

N ; (ii) can we choose the
best among the provided c. i. Below we discuss the former question, the latter one is
tackled in the next section.

Using one sample of observation

First, let us make a remarkable observation based on the strong law of large numbers
for Bernoulli Trials [128].

Proposition 24 For any N ∈ N≥0, two independent samples
−→
PN and

−→
P′

N of M ∈ N>0

independent observations each, the following limit holds a. s.

lim
M→∞

∣∣∣∣∣∣

Γk
(−→
PN

)

M
−

Γk
(−→
P′

N

)

M

∣∣∣∣∣∣

 = 0

Proof See the proof of Proposition 61 from Appendix C.1.2. �

This proposition states that for two independent vectors
−→
PN and

−→
P′

N of M i. i. d.

r. v. each, the proportion of k-type events in samples
−→
PN and

−→
P′

N is a. s. the same if
M goes to ∞. As a consequence, for a fixed confidence 1 − β, we have the following
theorem.

i

i

i

i

i

i

i

i

120 CHAPTER 6. MODEL CHECKING CSL

Theorem 25 For any N ∈ N≥0, confidence 1 − β, two independent samples
−→
PN and−→

P′
N of M ∈ N>0 independent observations each, the following holds:

Prob
(

lim
M→∞

(∣∣∣Ak
l

(−→
PN

)
− Ak

l

(−→
P′

N

)∣∣∣
)

= 0
)

= 1,

Prob
(

lim
M→∞

(∣∣∣Ak
r

(−→
PN

)
− Ak

r

(−→
P′

N

)∣∣∣
)

= 0
)

= 1.

Proof See the proof of Theorem 64 from Appendix C.1.2. �

This theorem implies that, for sufficiently large M , Equations (6.10) to (6.18) are
likely to provide the same c. i. bounds, both using different samples or just one sample

(i.e. taking
−→
PN =

−→
P′

N =
−→
P′′

N).
In practice we are not going to use the results of Theorem 25 because of the following

reasons: (i) we do not know how large the value of M should be in order to start using
one sample; (ii) in case we decide to use one sample, the confidence ξ should be re-

derived. For example, in Equation (6.12) we have ξ =
(
1 − β

2

)2

, but this is under the

assumption of using two independent samples
−→
PN and

−→
P′

N .

6.2.4 Choosing the best c. i. for Prob (s0, A U G)

At this point we would like to reduce the number of c. i. for αg. First notice that, due
to Lemma 26 below, Equations (6.12) through (6.15) are equivalent. Thus we can leave
just one of them, for example Equation (6.12).

Lemma 26 For a fixed confidence 1 − β and a sample
−→
PN of M ∈ N≥2 observations:

Ag
l

(−→
PN

)
= 1 − Ab,t

r

(−→
PN

)
, Ag,t

r

(−→
PN

)
= 1 − Ab

l

(−→
PN

)
. (6.19)

Proof See the proof of Lemma 65 from Appendix C.1.2. �

Further, let us first analyze the remaining equations, assuming that
−→
PN =

−→
P′

N =
−→
P′′

N .

Lemma 27 For a fixed confidence 1 − β, M ∈ N≥2, N ∈ N≥0 and sample
−→
PN of M

observations the following holds:

Ag,t
r

(−→
PN

)
≤ Ag

r

(−→
PN

)
+ At

r

(−→
PN

)
, Ab,t

r

(−→
PN

)
≤ Ab

r

(−→
PN

)
+ At

r

(−→
PN

)
.

Proof See the proof of Lemma 66 from Appendix C.1.2. �

Lemma 27 in combination with Equation (6.19) implies that Equation (6.12) pro-
vides the c. i. that is enclosed in the c. i. provided by other equations. Therefore,
considering Algorithm 3, it is the best equation for us when using one sample of ob-
servations.

Now we can move on to the case of different samples, i. e.
−→
PN 6= −→

P′
N 6= −→

P′′
N . Let

Al

(−→
PN ,

−→
P′

N ,
−→
P′′

N

)
≤ αg ≤ Ar

(−→
PN ,

−→
P′

N ,
−→
P′′

N

)
be a general form of the c. i. for αg, then

Table 6.1 gives the analysis of its borders with respect to the borders of the c. i. for
αN

k . We provide results for Equations (6.10) to (6.12) only 6. It is easy to see that the
tighter the c. i. of αN

k for all k ∈ N , the tighter the induced c. i. of αg.

6For the remaining equations the results are the same.

i

i

i

i

i

i

i

i

6.2. UNBOUNDED-UNTIL OPERATOR 121

Equation: (6.10) (6.11) (6.12)

Al

(−→
PN ,

−→
P′

N ,
−→
P′′

N

)
Ag

l

(−→
PN

)
րa Ab

r

(−→
PN

)
ցb

Ag
l

(−→
PN

)
ր

At
r

(−→
P′

N

)
ց

ր ր ր

Ar

(−→
PN ,

−→
P′

N ,
−→
P′′

N

) Ag
r

(−→
PN

)
ց

Ab
l

(−→
PN

)
ր Ag,t

r

(−→
P′

N

)
ց

At
r

(−→
P′

N

)
ց

ց ց ց
aIncreases.
bDecreases.

Table 6.1: The dependency between the c. i. of αg and αN
k

For instance, the c. i. borders given by Equation 6.10 are Al

(−→
PN ,

−→
P′

N ,
−→
P′′

N

)
=

Ag
l

(−→
PN

)
and Ar

(−→
PN ,

−→
P′

N ,
−→
P′′

N

)
= Ag

r

(−→
PN

)
+At

r

(−→
P′

N

)
, Table 6.1 indicates that with

the increase (ր) of the left border Ag
l

(−→
PN

)
we have an increase of Al

(−→
PN ,

−→
P′

N ,
−→
P′′

N

)

and with the decrease (ց) of the right borders Ag
r

(−→
PN

)
and At

r

(−→
P′

N

)
we have a

decrease of Ar

(−→
PN ,

−→
P′

N ,
−→
P′′

N

)
. This means that the tighter the c. i. of αN

g and αN
t the

tighter is the c. i. of αg.
The potential threat of tightening the c. i. is that since the left and right borders

are based on different samples we may get Al

(−→
PN ,

−→
P′

N ,
−→
P′′

N

)
> Ar

(−→
PN ,

−→
P′

N ,
−→
P′′

N

)

resulting in an invalid interval. Note that the problem can not be cured by simply

swapping the samples, e. g., if in Equation (6.12) we get Ag
l

(−→
PN

)
> Ag,t

r

(−→
P′

N

)
, then

by swapping
−→
PN and

−→
P′

N we get Ag
l

(−→
P′

N

)
≤ Ag,t

r

(−→
PN

)
. The reason for that, along

with the possible solutions, will be given later.

Equations # samples 1− β Range of ξ

(6.10), (6.11) 2 1
2 ·
(√

8 · ξ + 1 − 1
)

R[0,1]

(6.12) to (6.15) 2 2 · √ξ − 1 R[0.25,1]

(6.16) to (6.18) 3 2 · 3
√

ξ − 1 R[0.125,1]

Table 6.2: The required parameters for deriving the c. i. of αg with the confidence ξ

Before we proceed with the further analysis, it is important to note that Lemma 27
has its analog for the case of distinct samples.

i

i

i

i

i

i

i

i

122 CHAPTER 6. MODEL CHECKING CSL

Lemma 28 For a fixed confidence 1 − β, N ∈ N≥0, and a finite-state DTMC P, with

a positive probability there exist independent samples
−→
PN ,

−→
P′

N and
−→
P′′

N of M ∈ N≥2

independent observations each, such that:

Ag,t
r

(−→
PN

)
≤ Ag

r

(−→
P′′

N

)
+ At

r

(−→
P′

N

)
, and Ab,t

r

(−→
PN

)
≤ Ab

r

(−→
P′′

N

)
+ At

r

(−→
P′

N

)
.

(6.20)

Proof See the proof of Lemma 67 from Appendix C.1.2. �

The probability of Equation 6.20 holding is expected to increase with the growth
of M due to Theorem 25, that assures the convergence of the c. i. borders based on
independent samples.

Notice that for fixed M and N the width of the c. i. for αg depends on the confidence
ξ and used samples. Let us study this dependency by discussing the following cases:

1. Fixed ξ: Lemma 28 in combination with Lemma 26, similarly to the case of

taking
−→
PN =

−→
P′

N =
−→
P′′

N , suggests that with a positive probability Equation (6.12)
provides the tightest c. i. for αg.

2. Fixed samples: For any fixed ξ, the smaller value of 1− β provides the tighter
c. i. of αN

k which in its turn makes the c. i. of αg tighter. The dependencies
of 1 − β from ξ for all given equations are given in Table 6.2 and depicted in
Figure 6.2. It is clear that for any fixed ξ the values of 1− β are the smallest for
Equation (6.12) thus making it the most attractive to use.

This leaves Equation (6.12) to be the most preferable to use, considering that:

1. The dependency of 1−β from ξ is of utmost importance, because from Section 5.3
we know that the c. i. width increases rapidly when the confidence reaches one.

2. The use of Equations (6.16) to (6.18) seems to be impractical, since they are
based on three independent samples.

3. The overall user-defined confidence ξ, in case of Equation (6.12), belongs to
R[0.25,1.0] but not R[0,1]. This limitation is not significant because in practice
(typically) we would like to have a c. i. with a confidence higher than 0.5.

Now, after having obtained only one c. i., namely the one defined by Equation (6.12):

Prob
(
Ag

l

(−→
PN

)
≤ αg ≤ Ag,t

r

(−→
P′

N

))
�
(

1 − β

2

)2

,

let us consider an example.

Example 21 For the DTMC of Example 19 let us compute the 95% c. i. (i. e. ξ = 0.95)
for αg using Equation (6.12). According to Table 6.2 we should choose:

1 − β = 2 ·
√

ξ − 1 = 0.949358869,

meaning that β = 0.050641131, and z̃n (0.050641131) ≈ 1.96.

i

i

i

i

i

i

i

i

6.2. UNBOUNDED-UNTIL OPERATOR 123

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

1 - β

ξ

0.125 0.25

Eq. (6.12) to (6.15)

Eq. (6.16) to (6.18)

Eq. (6.10), (6.11)

Figure 6.2: The confidence 1 − β versus the confidence ξ

Γg
N Ag

l (.) Γg,t
N Ag,t

r (.)

−→
P3 6 0.27993334 7 0.999394945

−→
P′

3 5 0.173333333 6 0.92006666

Table 6.3: Computation of Al (.) and Ar (.) for the c. i. of αg

Assume, for M = 10 and N = 3 we obtained the following two samples:

−→
P3 = (0, 2, 1, 1, 2, 1, 1, 1, 2, 1) ,

−→
P′

3 = (2, 2, 1, 1, 1, 0, 1, 1, 2, 2) .

As before G = {1} and A = {0}. Table 6.3 contains values of Γk
N , for k ∈

{{g}, {g, t}}, Ag
l (.) and Ag,t

r (.) on both samples.
Now it is easy to see that Equation (6.12) contains two c. i. instead of one. This is

because the sample vectors can be swapped when deriving Ag
l (.) and Ag,t

r (.):

Prob
(
Ag

l

(−→
P3

)
≤ αg ≤ Ag,t

r

(−→
P′

3

))
= 0.95,

Prob
(
Ag

l

(−→
P′

3

)
≤ αg ≤ Ag,t

r

(−→
P3

))
= 0.95.

i

i

i

i

i

i

i

i

124 CHAPTER 6. MODEL CHECKING CSL

Swapping the samples

As it was noted in Example 21, Equation (6.12) actually provides us with two c. i.,
namely:

Prob
(
Ag

l

(−→
PN

)
≤ αg ≤ Ag,t

r

(−→
P′

N

))
�
(

1 − β

2

)2

, and (6.21)

Prob
(
Ag

l

(−→
P′

N

)
≤ αg ≤ Ag,t

r

(−→
PN

))
�
(

1 − β

2

)2

. (6.22)

Notice, that these c. i. are defined by two c. i., based on one sample each:

IN =
[
Ag

l

(−→
PN

)
, Ag,t

r

(−→
PN

)]
, and I

′

N =
[
Ag

l

(−→
P′

N

)
, Ag,t

r

(−→
P′

N

)]
. (6.23)

Below, we first show that Algorithm 3 does not give “contradictory” answers on
the c. i. defined by Equations (6.21) and (6.22). Then we discuss how to resolve the
choice between these c. i.

Definition 23 We say that Algorithm 3 gives a non-contradictory answer for two c. i.[
A1

l , A
1
r

]
and

[
A2

l , A
2
r

]
if for any p ∈ N[0,1] and ⊲⊳∈ {<,≤, >,≥} we never have answers

TRUE for one c. i. and FALSE for another.

Lemma 29 For two c. i.
[
A1

l , A
1
r

]
and

[
A2

l , A
2
r

]
such that A2

l ≤ A1
r and A1

l ≤ A2
r

Algorithm 3 gives a non-contradictory answer.

Proof See the proof of Lemma 68 from Appendix C.1.2. �

From Lemma 29 it follows that Algorithm 3 does not provide contradictory answers

for the c. i. given by Equations (6.21) and (6.22). The latter is because Ag
l

(−→
PN

)
≤

Ag,t
r

(−→
PN

)
and Ag

l

(−→
P′

N

)
≤ Ag,t

r

(−→
P′

N

)
, i. e. the initial conditions of the lemma are

satisfied.
From the statistical point of view, the choice between Equations (6.21) and (6.22)

can be resolved only once, prior to the c. i. computation. Otherwise, if we decide what
c. i. to use based on the knowledge of one of them being “better” (tighter) we are
affecting the confidence. Therefore, taking into the account that the provided c. i. are
equivalent up to the permutation of samples, without loss of generality, we can always
use the c. i. given by Equation (6.21).

Now, when we have the c. i. for αg in place, recall that there are still some uncer-
tainties in our approach. Namely, when computing the sequential7 c. i. of αg we would
like to know if it is more advantageous to increase the sample size M or the simulation
length N .

6.2.5 The c. i. dependency on the sample size and the simula-
tion depth

Below we consider the c. i. of αg given by Equation (6.21). The main goal of this
section is to investigate the dependency of the c. i. width from the parameters, such

7As it is required for Algorithm 3, see the reasoning in Section 6.1.

i

i

i

i

i

i

i

i

6.2. UNBOUNDED-UNTIL OPERATOR 125

as sample size M and simulation depth N . The latter can allow us to optimize the
performance of the model-checking procedure described in the next section.

Let us start our analysis with considering the left Ag
l (.) and right Ag,t

r (.) border
of the c. i. for αg. These borders stem either from Equation (6.4) or (6.6). Also, as it

was noted in Section 6.2.2 they can be seen as functions of Γk
N :

Ak
l

(−→
PN

)
= Ak

l

(
Γk

N

)
, Ak

r

(−→
PN

)
= Ak

r

(
Γk

N

)
,

Ãk
l

(−→
PN

)
= Ãk

l

(
Γk

N

)
, Ãk

r

(−→
PN

)
= Ãk

r

(
Γk

N

)
.

In this case the borders have N as an explicit parameter which only influences the

value of Γk
N = Γk

(−→
PN

)
. This always us to first study the behavior of the c. i. borders

with respect to Γk
N , and then explore the dependency of Γk

N on
−→
PN .

We already know that the c. i. of αg is defined by the two intervals IN and I
′

N .
Thus, the former one can be analyzed by considering the latter two. Note that in case

of taking
−→
PN =

−→
P′

N we have IN = I
′

N , uniquely defining behavior of the c. i. given by
Equation (6.12).

In the following, we first analyze the behavior of the c. i. with respect to the sample
size and then the simulation depth.

The dependency on sample size M . In order to understand the behavior of
borders Ak

l

(
Γk

N

)
and Ak

r

(
Γk

N

)
with respect to M consider the following lemma.

Lemma 30 For a fixed confidence 1 − β, k ∈ N and M ∈ N≥2 the following holds:

X
N

k −
√

2 · z̃n (β)√
M

≤ Ak
l

(
Γk

N

)
≤ X

N

k ≤ Ak
r

(
Γk

N

)
≤ X

N

k +
√

2 · z̃n (β)√
M

.

Proof See the proof of Lemma 63 from Appendix C.1.2. �

Note that the behavior of Ãk
l

(
Γk

N

)
and Ãk

r

(
Γk

N

)
is similar, namely:

X̃N
k −

√
2 · z̃n (β)√

M
≤ Ãk

l

(
Γk

N

)
≤ X̃N

k ≤ Ãk
r

(
Γk

N

)
≤ X̃N

k +
√

2 · z̃n (β)√
M

It is clear now, that the widths of the intervals IN and I
′

N decrease proportionally
to 1√

M
with the increase of M . On the other hand, the center points of these intervals

may shift with the increase of M , making IN and I
′

N move against each. These means
that the c. i. of αg, can shift and become both shorter or wider with the increase of M .

Example 22 Consider again Example 21 and increase the sample size M by 10 via

extending the samples
−→
P3 and

−→
P′

3 by 10 observations each:

−→
P3 = (0, 2, 1, 1, 2, 1, 1, 1, 2, 1, 0 , 0 , 0 , 0 , 0 , 2 , 2 , 2 , 2 , 2) ,
−→
P′

3 = (2, 2, 1, 1, 1, 0, 1, 1, 2, 2, 1 , 0 , 0 , 0 , 0 , 0 , 2 , 2 , 2 , 2) .

These samples are obtained via improper simulation because the observations do not
comply to the underlying probability distribution. Nevertheless such samples can occur

i

i

i

i

i

i

i

i

126 CHAPTER 6. MODEL CHECKING CSL

Γg
N Ag

l (.) Γg,t
N Ag,t

r (.)

−→
P3 6 0.093942267 12 0.820284983

−→
P′

3 7 0.135528311 12 0.820284983

Table 6.4: Computation of Al (.) and Ar (.) for the c. i. of αg

and thus we take them to illustrate a possible increase in the width of the c. i. of αg due
to the increase of M .

Table 6.4 contains some values of Γk
N on both samples. Equation (6.21) gives us

the needed c. i., that is [0.093942267, 0.820284983]. Notice, that the width of the c. i.
chosen in Example 21 is 0.64013332 whereas now it is larger, namely 0.72634272.

Although the increase of the c. i. width described in the example above is possible,
let us note that increasing M should eventually tighten the c. i. of αg due to the
convergence of the c. i. borders (cf. Section 6.2.3). Also, recall that for the correct c. i.
of αN

g and αN
g,t we have:

Ag
l

(−→
PN

)
≤ αN

g ≤ αg ≤ αN
g,t ≤ Ag,t

r

(−→
PN

)
.

Thus, for any M the width of the correct c. i. of αg can not be smaller than αN
g,t −αN

g .

The dependency on simulation depth N . Below we first analyze the borders

Ak
l

(−→
PN

)
and Ak

r

(−→
PN

)
given by Equation (6.4), and then Ãk

l

(−→
PN

)
and Ãk

r

(−→
PN

)
as

provided by Equation (6.6).

0.0

0.0

1.0

MΓ1 Γ2Γk
N

A
k
r

(Γ
k
N

)

A
k
l

(Γ
k
N

)c.
i.

b
o
rd

er
s

Figure 6.3: The behavior of Ak
l

(
Γk

N

)
and Ak

r

(
Γk

N

)

Figure 6.3 shows the dependency of Ak
r

(
Γk

N

)
and Ak

l

(
Γk

N

)
on Γk

N . Their values
increase with the increase of Γk

N ∈ N(0,Γ2)
and Γk

N ∈ N(Γ1,M) correspondingly. Here

i

i

i

i

i

i

i

i

6.2. UNBOUNDED-UNTIL OPERATOR 127

Γ1 and Γ2 are such that Ak
l (Γ1) = 0, Ak

r (Γ2) = 1. These results are reflected by
Lemma 31 and Proposition 32.

Lemma 31 For Ak
l

(−→
PN

)
and Ak

r

(−→
PN

)
given by Equation (6.4) let k ∈ N , z̃n (β) ≥

0, M ∈ N≥2 and Γk
N ∈ N[0,M] then the following holds:

• Ak
l

(
Γk

N

)
= 0 iff Γk

N = (fzn(β))2·M
(fzn(β))2+M−1

or Γk
N = 0.

• Ak
r

(
Γk

N

)
= 1 iff Γk

N = M·(M−1)

(fzn(β))2+M−1
or Γk

N = M .

Proof See the proof of Proposition 69 from Appendix C.1.3. �

Proposition 32 For Ak
l

(−→
PN

)
and Ak

r

(−→
PN

)
given by Equation (6.4) let k ∈ N ,

z̃n (β) ≥ 0, M ∈ N≥2, Γk
N ∈ N(0,M) then:

Γ1 =
(z̃n (β))

2 · M
(z̃n (β))2 + M − 1

, and Γ2 =
M · (M − 1)

(z̃n (β))2 + M − 1
.

• Ak
l

(
Γk

N

)
is increasing from 0 to 1.0 with the increase of Γk

N ∈ N(Γ1,M),

• Ak
r

(
Γk

N

)
is increasing from 0 to 1.0 with the increase of Γk

N ∈ N(0,Γ2)
.

Proof See the proof of Proposition 71 from Appendix C.1.3. �

It is easy to see that for a particular sample
−→
PN , Γg

N is non-decreasing and Γg,t
N is

non-increasing with the increase of N due to the absorbing structure of the considered

Markov chain. The increase of N means that for the sample
−→
PN we simulate the states

defined by its observations for K ∈ N>0 time units and obtain the sample
−−−−→
PN+K that

results in Γg
N+K and Γg,t

N+K . It is also important to note that for any N ∈ N≥0 we

have Γg
N ≤ Γg,t

N and therefore Ag
l (Γg

N) ≤ Ag,t
r

(
Γg,t

N

)
.

Now we can investigate the behavior of the interval IN (I
′

N), defined by Equa-
tion (6.23) (cf. page 124). For that consider Figure 6.4 that is a consequence of the facts
mentioned above and Figure 6.3. Let A = Ag,t

r

(
Γg,t

N

)
, B = Ag,t

r (Γg
N), C = Ag

l

(
Γg,t

N

)

and D = Ag
l (Γg

N) then for any K ∈ N≥0 we have:

B ≤ Ag
l

(
Γg

N+K

)
≤ A and D ≤ Ag,t

r

(
Γg,t

N+K

)
≤ C,

which means that for any K ∈ N≥0 we have:

IN+K ⊆ IN and similarly I
′

N+K ⊆ I
′

N . (6.24)

Figure 6.5 shows the typical behaviour of Ãk
r

(
Γk

N

)
and Ãk

l

(
Γk

N

)
with respect to

Γk
N . It is very similar to the one exhibited by the borders Ak

l

(
Γk

N

)
and Ak

r

(
Γk

N

)

(cf. Figure 6.3). Therefore, we can conclude that the interval inclusion given by

Equation (6.24) also holds in case of IN and I
′

N based on Ãk
r (.) and Ãk

l (.).
We are now interested in how the c. i. of αg at epoch N + K, with K ∈ N≥0,

depends on the c. i. of αg at epoch N . For that we consider the intervals IN and I
′

N

as depicted in Figure 6.6.

i

i

i

i

i

i

i

i

128 CHAPTER 6. MODEL CHECKING CSL

• Figure 6.6(a): the c. i. at epoch N is invalid and it remains to be invalid at

epoch N +K because Ag
l

(−→
PN

)
≤ Ag

l

(−−−−→
PN+K

)
and Ag,t

r

(−−−−→
P′

N+K

)
≤ Ag,t

r

(−→
P′

N

)
.

• Figure 6.6(b): the c. i. at epoch N + K either becomes invalid or we obtain a
tighter c. i.

[
Ag

l

(−−−−→
PN+K

)
, Ag,t

r

(−−−−→
P′

N+K

)]
⊆
[
Ag

l

(−→
PN

)
, Ag,t

r

(−→
P′

N

)]
.

• Figure 6.6(c): is similar to the case of Figure 6.6(b).

1.0

0.0 Γg
N

Γg,t
N

M

0.0

A

B

C

D

A
g,t

r

(x
)

A
g
l
(x

)

x

Figure 6.4: The behavior of Ag
l (x) and Ag,t

r (x) with x ∈ N[0,M]

0.0

0.0

1.0

MΓ̃1 Γ̃2Γk
N

Ã
k
r

(Γ
k
N

)

Ã
k
l

(Γ
k
N

)c.
i.

b
o
rd

er
s

Figure 6.5: The behavior of Ãk
l

(
Γk

N

)
and Ãk

r

(
Γk

N

)

i

i

i

i

i

i

i

i

6.2. UNBOUNDED-UNTIL OPERATOR 129

• Figure 6.6(d): is similar to the case of Figure 6.6(b).

• Figure 6.6(e): then, since Ag,t
r

(−→
PN

)
< Ag

l

(−→
P′

N

)
, we always have:

[
Ag

l

(−−−−→
PN+K

)
, Ag,t

r

(−−−−→
P′

N+K

)]
⊆
[
Ag

l

(−→
PN

)
, Ag,t

r

(−→
P′

N

)]
.

It is clearly now that the c. i. of αg is either enclosed in the c. i. thereof derived for
the previous time point or is invalid (cf. Figures 6.6(a)). Moreover, both Figures 6.6(a)
and 6.6(e) correspond to the cases when we do not have a proper c. i. of αg. The latter

follows from the fact that correct intervals IN and I
′

N must contain αg. Therefore,

one should use equality IN ∩ I
′

N = ∅ as an indicator of a poor simulation run. Note
that such simulation can be cured by increasing the number of observations M , as
guaranteed by the convergence of the c. i. borders (cf. Section 6.2.3).

0 1

A
g
l

“−−→
P′

N

”
A

g,t
r

“−−→
P′

N

”

A
g,t
r

“−−→
PN

”
A

g
l

“−−→
PN

”

IN

I
′

N

(a) A
g,t
r

„−−→
P

′
N

«
< A

g
l

“−−→
PN

”

0 1

C. i. αg

A
g
l

“−−→
P′

N

”
A

g,t
r

“−−→
P′

N

”

A
g,t
r

“−−→
PN

”
A

g
l

“−−→
PN

”

IN

I
′

N

(b) A
g
l

„−−→
P

′
N

«
≤ A

g
l

“−−→
PN

”
≤ A

g,t
r

„−−→
P

′
N

«
≤ A

g,t
r

“−−→
PN

”

A
g

l

“−−→
P′

N

”
A

g,t
r

“−−→
P′

N

”

C. i. αg

A
g,t
r

“−−→
PN

”
A

g
l

“−−→
PN

”0 1

IN

I
′

N

(c) A
g
l

“−−→
PN

”
< A

g
l

„−−→
P

′
N

«
≤ A

g,t
r

„−−→
P

′
N

«
< A

g,t
r

“−−→
PN

”

0 1

C. i. αg

A
g,t
r

“−−→
PN

”
A

g
l

“−−→
PN

”

A
g

l

“−−→
P′

N

”
A

g,t
r

“−−→
P′

N

”
IN

I
′

N

(d) A
g
l

“−−→
PN

”
≤ A

g
l

„−−→
P

′
N

«
≤ A

g,t
r

“−−→
PN

”
≤ A

g,t
r

„−−→
P

′
N

«

0 1

C. i. αg

A
g,t
r

“−−→
PN

”
A

g

l

“−−→
PN

”

A
g
l

“−−→
P′

N

”
A

g,t
r

“−−→
P′

N

”
IN

I
′

N

(e) A
g,t
r

“−−→
PN

”
< A

g
l

„−−→
P

′
N

«

Figure 6.6: Deriving the c. i. of αg using Equation (6.12)

To conclude the discussion we shall repeat that the increase of M can widen, shrink
or shift the c. i. of αg and pushing M to infinity results in a c. i. that is not shorter than

αN
g,t −αN

g . The increase of N results either in an improper interval (when IN ∩I
′

N = ∅)
or in a subinterval of the original one. Yet, we can not indicate that the increase of
N is more advantageous (as opposed to the increase of M), because the c. i. borders
are functions of Γk

N , which change rate solely depends on the Markov chain structure.
Thus, for simplicity we suggest to alternate between increasing N and M .

i

i

i

i

i

i

i

i

130 CHAPTER 6. MODEL CHECKING CSL

6.2.6 The model-checking procedure

To complete the model-checking procedure for formula P⊲⊳ b (A U G) in any initial state
s0 ∈ S recall that the state space S is divided into three disjoint parts: the “allowed”
transient states A \ (G ∪ BA,G), the “bad” states BA,G ∪ (S \ (A ∪ G)) and the “goal”
states G. Therefore consider the following cases:

1. s0 ∈ G or s0 ∈ BA,G ∪ (S \ (A ∪ G)) – trivial because Prob (s0, A U G) = 1.0 and
Prob (s0, A U G) = 0.0 respectively

2. s0 ∈ A \ (G ∪ BA,G) – the c. i. approach should be applied

The model-checking procedure for the last case is given in Algorithm 4. This algorithm
is based on a sequential procedure for deriving the c. i. of αg (cf. Equation (6.21) on
page 124) combined with the check against the probability constraint provided by
Algorithm 3 (cf. page 110).

Algorithm 4 unboundedUntil (Q, P⊲⊳ b (A U G) , s0, ξ, Mmax , ∆M , Nmax , ∆N , δ′)

Require: s0 ∈ A \ (G ∪ BA,G)
Require: Nmax ∈ N≥1 and ∆M , Mmax ∈ N≥2

Require: ∆M is sufficiently large
Require: ξ ∈ R[0.25,1.0)

1: RESULT := NN , INVD := FALSE
2: Obtain: PB from Q

3: M := 0, N := 0,
−→
PN := ∅, −→P′

N := ∅, I := 1, β := 2 ·
(
1 −√

ξ
)

4: repeat
5: if ((I is odd) ∨ (M ≥ Mmax)) ∧ (N < Nmax) ∧ ¬INVD then
6: N := min {N + ∆N , Nmax}
7: else
8: M := min {M + ∆M , Mmax}
9: end if

10: extendSamples
(
s0,P

B,
−→
PN ,

−→
P′

N , M, N
)

11: /*Compute: IN and I
′

N*/

12: computeBordersUU
“

β,
−→
PN ,

−→
P′

N

”

13: INVD :=
“

IN ∩ I
′

N = ∅
”

14: if ¬INVD ∧
“

Ag,t
r

“−→
P′

N

”

− A
g

l

“−→
PN

”

< δ′
”

then

15: RESULT := checkBoundVSConfInt
“

⊲⊳ , b,
h

A
g

l

“−→
PN

”

, Ag,t
r

“−→
P′

N

”i”

16: end if
17: I := I + 1

18: until ((RESULT = NN) ∧ (((N < Nmax) ∧ ¬INVD) ∨ (M < Mmax)))

19: return
(
Ag,t

r

(−→
P′

N

)
− Ag

l

(−→
PN

)
≥ δ′

)
? ERR : RESULT

Below we discuss Algorithm 4 in more detail by analyzing its preconditions, argu-
ments and the body. The algorithm has several arguments: Q – the input CTMC,
P⊲⊳ b (A U G) – the formula to be checked, s0 – the initial state, ξ – the desired confi-
dence of the result, δ′ – the maximal width of the confidence interval (cf. Section 6.1),

i

i

i

i

i

i

i

i

6.2. UNBOUNDED-UNTIL OPERATOR 131

Mmax – the maximum number of observations in the samples, ∆M – the number by
which we increase the number of observations in the samples, Nmax – the maximum
simulation depth, ∆N – the number of steps by which we increase the simulation depth.
The preconditions of the algorithm are:

• s0 ∈ A \ (G ∪ BA,G) – the condition ensures that we are not in the trivial cases
of s0 ∈ G or s0 ∈ BA,G ∪ (S \ (A ∪ G)).

• Nmax ∈ N≥1 – because simulations start in a transient state, the simulation
length should be at least one, otherwise the c. i. for αg will be [0, 1].

• ∆M , Mmax ∈ N≥2 – all our results so far have been proven for M ∈ N≥2.

• ∆M is sufficiently large – the minimal value of M should be large enough for the
Central Limit theorem to be applicable.

• ξ ∈ R[0.25,1.0) – is enforced by Equation (6.12) (cf. Table 6.2 on page 121).

Further we discuss the algorithm step by step. The initialization part takes place
in lines 1–3. There, among others, we compute β from the overall confidence ξ and
the embedded DTMC PB where the states in G and BA,G ∪ (S \ (A ∪ G)) are made
absorbing.

The main loop is present in lines 4–18, it does iterations until either the model-
checking problem is answered or the maximum of both M and N are reached. Note
that, if M = Mmax and N < Nmax then iterations are terminated if the intervals IN

and I
′

N (cf. Equation (6.23) on page 124) do not intersect. The reason for that is that
the non-intersecting intervals indicate an improper simulation run which can be cured
only by increasing the number of observations (M). For more detail see Section 6.2.5.

Lines 5–9 of the main loop are devoted to increasing M and N . The condition on
line 5 ensures the increase of N if the conjunction of the following conditions hold: (i)
it is an odd iteration or the maximum number of observation is reached, (ii) the the
maximum simulation length is not reached, (iii) the intervals IN and I

′

N , obtained on
the previous iteration, intersect. In all other cases we increase M .

The function extendSamples (. . .), called in line 10, depending on increase of M or
N , adds more observations to the samples or simulates the observations until the new

epoch N . At this line, for sufficiently large values of M we can take
−→
PN =

−→
P′

N due to
Theorem 25 (cf. page 120).

In lines 12–13, we compute the c. i. IN and I
′

N , and then check their validity. The
result of the latter is stored in the auxiliary variable INVD .

The if clause in lines 14 to 16 is responsible for invoking Algorithm 3. Note that
it can be invoked only if: (i) INVD 6= TRUE , i. e. the c. i. of αg is not detected as
invalid, (ii) the width of the derived c. i. is less than δ′ (cf. Section 6.1).

Note that in the algorithm we bound the maximum allowed sample size and the
simulation depth. This is done in order to control the simulation length and to assure
the algorithm termination even if b = αg. Also, we do not stop iterations only because
the desired width of the c. i. is reached. Instead, if the definite answer is not yet
known, we continue simulation. The latter is done because it is expected to increase
the confidence levels of the algorithm since more samples means greater accuracy.

In case Mmax and Nmax are set to infinity, the convergence of Algorithm 4 is a. s.
guaranteed under the assumption that |b−αg| = δ > 0. The latter is due to the strong

i

i

i

i

i

i

i

i

132 CHAPTER 6. MODEL CHECKING CSL

law of large numbers for Bernoulli trials (cf. Section 5.7) and the fact that we work
with an absorbing Markov chain. In practice we have finite Mmax and Nmax and thus
the algorithm can terminate before the desired width of the c. i. is reached. In the
latter case, in line 19, we return the error value (ERR) in order to indicate a faulty
simulation run.

Clearly, not taking into account the possible drop of confidence due to the naive
sequential c. i. approach, the confidence of the algorithm’s definite answer should be
at least ξ, if 0 < δ′ ≤ δ (cf. Section 6.1).

6.3 Steady-state operator

Let us first recall the numerical model checking procedure for the steady-state operator,
i.e. S⊲⊳ b (G), on a CTMC (S, Q, L). This procedure is fully explained in Section 1.2.1
and consists of two parts: the graph analysis, and the numerical computations. More
precisely, the model-checking procedure goes as follows:

1. Using graph analysis, all the BSCCs of the CTMC are determined. This yields
a set {Bi}i∈I where I = {1, 2, 3, . . . , K} is a set of indices, with K being the
number of BSCCs, and Bi the set of states belonging to BSCC i.

2. For all i ∈ I and any si ∈ Bi, the steady-sate probability πg
i = Prob∞ (si, G) is

computed. This is done by solving a system of linear equations for Bi.

3. For all s0 ∈ S, the following steps are undertaken:

(a) For BSCC Bi the probability to reach Bi from s0, i.e. ps0

i = Prob (s0, ♦Bi),
is computed by solving a system of linear equations.

(b) The long-run probability to be in G state, if started in state s0, is computed
as:

Prob∞ (s0, G) =
∑

i∈I

ps0

i · πg
i (6.25)

(c) The probability Prob∞ (s0, G) is checked against the constraint ⊲⊳ b in order
to verify the validity of the formula S⊲⊳ b (G) in state s0.

When using simulations, we assume that the structure of the Markov chain is known,
i.e. we can distinguish between the transient states and the ones that belong to dif-
ferent BSCCs. Then we are able to provide c. i. for the probabilities ps0

i and πg
i . The

former can be done using the model-checking procedure for unbounded-until operator
explained in Section 6.2, and the latter using the discrete-time simulation approach
discussed in Section 5.6. The desired c. i. for Prob∞ (s0, G) is then constructed by
Equation (6.25).

Before we move on with the details of the sketched procedure, we should note that
we provide two techniques for model checking S⊲⊳ b (G), the first one is purely based on
the simulation approach as described above and the second one is a hybrid combining
both numerically computed probabilities ps0

i and the c. i. for πg
i . The reason for having

two approaches is going to be explained later.

i

i

i

i

i

i

i

i

6.3. STEADY-STATE OPERATOR 133

6.3.1 The pure DES approach

In this section we derive a procedure that allows to model check S⊲⊳ b (G) by using
pure discrete event simulation. In the following, we first consider the simplest way of
deriving the c. i. for probability Prob∞ (s0, G). Then, we discuss the effectiveness of
the derived c. i. and the possible ways for its improvement. After that, we introduce
the model-checking algorithm for S⊲⊳ b (G) and analyze its convergence and efficiency
issues.

Deriving the confidence interval

For a given confidence ξs
i , we can compute the c. i. for probability πg

i , i. e.

∀i ∈ I : Prob
(
Ai

l ≤ πg
i ≤ Ai

r

)
= ξs

i , (6.26)

using the simulation algorithm of Section 5.6. Let us fix now an initial state s0 ∈ S
then for a given confidence ξr

i the c. i. for probability ps0

i , i. e.

∀i ∈ I : Prob
(
As0

l

(−→
Pi

)
≤ ps0

i ≤ As0
r

(−→
P′

i

))
� ξr

i . (6.27)

can be computed by employing the simulation algorithm of Section 6.2.
Note that we use a new c. i. notation, namely we omit the samples from the c. i.

borders of πg
i , add the upper indexes for the c. i. borders of πg

i and ps0

i , and change
the meaning of the samples lower index, which now contains the identifier of BSCC
Bi. We also assume that the c. i. borders belong to the interval R[0,1]. This is because

πg
i , ps0

i ∈ R[0,1] and if we, for instance, have As0

l

(−→
Pi

)
< 0 or Ai

r > 1 then, without loss

of generality, we can assign As0

l

(−→
Pi

)
= 0 and Ai

r = 1.

In order to obtain the c. i. for Prob∞ (s0, G) we shall combine the c. i. given by
Equations (6.26) and (6.27) using Equation (6.25). This is done by the following
theorem.

Theorem 33 For the c. i. given by Equations (6.26) and (6.27), and based on inde-
pendently obtained samples, the following c. i. results:

Prob

(
K∑

i=1

As0

l

(−→
Pi

)
· Ai

l ≤ Prob∞ (s0, G) ≤
K∑

i=1

As0
r

(−→
P′

i

)
· Ai

r

)
�

K∏

i=1

ξr
i ξs

i ,

under the assumption that for all i ∈ I : As0

l

(−→
Pi

)
, As0

r

(−→
P′

i

)
, Ai

l , A
i
r ∈ R[0,1].

Proof See the proof of Theorem 72 from Appendix C.2. �

As a simple consequence of Theorem 33, assuming that for all i ∈ I we have
ξr
i = ξs

i = ξ for some confidence ξ and n = 2 · K, we get the following c. i.

Prob

(
K∑

i=1

As0

l

(−→
Pi

)
· Ai

l ≤ Prob∞ (s0, G) ≤
K∑

i=1

As0
r

(−→
P′

i

)
· Ai

r

)
� (ξ)

n
. (6.28)

This c. i. is more convenient for us, because, when given a desired overall confidence ϑ
for the c. i. of Prob∞ (s0, G), we can easily derive the value of ξ as the n’th root of ϑ.

i

i

i

i

i

i

i

i

134 CHAPTER 6. MODEL CHECKING CSL

The efficiency of the derived confidence interval

At this point it is apparent that the dependency of ξ from ϑ is very poor. Clearly, there
is at least one element in the set I and, since ϑ ∈ R[0,1), the value of ξ will exceed ϑ.
Remember that, the larger the confidence ξ, the wider the c. i. given by Equations (6.26)
and (6.27). The latter implies a wider c. i. for Prob∞ (s0, G). Therefore, in order to
keep this c. i. as tight as possible, a significant increase of the sample sizes should be
considered, increasing the costs of simulation.

A similar effect was discovered in [145] when using Monte Carlo simulation and hy-
pothesis testing for model checking nested CSL formulas. In this case, the indifference
intervals of sub-formulas have to be much smaller than the defined indifference region
of the outer probabilistic operator, causing a significant increase of sample sizes. The
solution was suggested to model check all the sub formulas using numerical techniques
and then apply simulation only to the outermost operator.

In our setting, for all i ∈ I, we could consider computing either all πg
i or all ps0

i

probabilities numerically, and/or use simple graph analysis in order to avoid computing
the c. i. for some trivial cases. Both of these possibilities will reduce the value of ξ, but
next we will first discuss the latter approach and the former one will be treated later.

Let IG = {i ∈ I | Bi ∩ G 6= ∅}, then we can automatically say that for any i ∈ I\IG :
πg

i = 0, where the set I is assumed to be known and IG is easy to compute. Next,
for any i ∈ IG let S0

i ⊆ S be a set of states such that for any s0 ∈ S0
i the BSCC

Bi is unreachable from s0, then clearly ps0

i = 0. As a result, we need to derive the
c. i. of πg

i only when i ∈ Is0

G =
{
i ∈ IG |s0 6∈ S0

i

}
. Also, for any i ∈ IG , let S1

i ⊆ S
be a set of states such that for any s0 ∈ S1

i all the paths from s0 lead to Bi, then
clearly ps0

i = 1. The computation of sets S0
i and S1

i can be efficiently done using a
graph-based analysis suggested in [31]. To summarize, using these observations we
can avoid computing the c. i. for probabilities that are definitely zero or one. This,
taking into consideration Equation (6.28), will reduce the confidence levels needed
for Equations (6.26) and (6.27), and also reduce the number of c. i. that need to be
computed. All in all, these optimizations will result in a tighter c. i. for Prob∞ (s0, G)
and possibly fewer computations.

The model-checking algorithm

The model-checking procedure is now summarized in Algorithm 5. This algorithm has
parameters that are almost the same as of Algorithm 4 therefore we will only indicate
the differences, namely: S⊲⊳ b (G) – the model-checking problem and ϑ – the desired
confidence of the result. Note that, for simplicity we use the same constants ∆M ,
Mmax for sample sizes when computing the c. i. of both ps0

i and πg
i . This is not a

serious limitation and can be easily changed.
Below we discuss Algorithm 5 in more details by analyzing its preconditions and

the body. At the end we also consider its convergence and efficiency.
The preconditions of the given algorithm overlap with the preconditions of Algo-

rithm 4. We do not put any conditions on the initial state s0 because due to the graph
analysis we are not going to compute the c. i. for ps0

i in the case of s0 ∈ Bi. We set
the condition ϑ ∈ R[0.0625,1.0), because the parameter ξ ∈ R[0.25,1.0) of Algorithm 4 is
computed as an n’th root of ϑ with n ∈ N≥2.

i

i

i

i

i

i

i

i

6.3. STEADY-STATE OPERATOR 135

Algorithm 5 steadyState (Q, S⊲⊳ b (G) , s0, ϑ, Mmax , ∆M , Nmax , ∆N , δ′)

Require: Nmax ∈ N≥1 and ∆M , Mmax ∈ N≥2

Require: ∆M is sufficiently large
Require: ϑ ∈ R[0.0625,1.0)

1: Obtain: {Bi}i∈I , Is0

G
2: if Is0

G = ∅ then
3: return (0 ⊲⊳ b)
4: end if
5: /*Use Algorithm 6 to initialize MSCIU , MCIS , MTSU , MTSS , ξ, β*/
6: REACH := init

`

Q, I
s0
G , {Bi}i∈I

, ϑ,MSCIU ,MCIS ,MTSU ,MTSS , ξ, β
´

7: Obtain: P, −→q from Q, and set Ms := 0, I := 0, INVD := FALSE

8: repeat
9: for all j ∈ I

s0
G

V

REACH do
10: /*Use Algorithm 7 to compute the c. i. for p

s0
i */

11: MSCIU [j] := confintUU
`

s0,P
B , j, {Bi}i∈I

,MTSU , β, I, INVD, . . .
´

12: if INVD then
13: return NN

14: end if
15: end for
16: /*Use Algorithm 8 to check the c. i. of Prob∞ (s0, G) against ⊲⊳ b*/
17: RESULT := checkCI

`

I
s0
G , ⊲⊳ , b,MSCIU ,MCIS , δ′

´

18: if RESULT = NN then
19: inc (Ms, ∆M , Mmax)
20: for all i ∈ I

s0
G do

21: /*Use algorithm of Section 5.6 to compute the c. i. for π
g
i */

22: MCIS [i] := confintSS (P,−→q , Bi,MTSS [i], Ms, ξ)
23: end for
24: end if
25: /*Use Algorithm 8 to check the c. i. of Prob∞ (s0, G) against ⊲⊳ b*/
26: RESULT := checkCI (⊲⊳ , b,MSCIU ,MCIS , δ′)
27: I := I + 1
28: until ((RESULT = NN) ∧ moreIter (MTSU , Ms, Nmax , Mmax))
29: return isCITight (MSCIU ,MCIS , δ′) ? RESULT : ERR

The line 1 of the algorithm is devoted for computing the sets {Bi}i∈I and Is0

G . The
former set can be computed outside the algorithm, along with the auxiliary sets IG
and

{
S0

i

}
i∈IG

, since they are constant for the given CTMC and the model-checking

problem. The set Is0

G is a set of BSCC indexes such that these BSCCs are reachable
from s0 and contain G states. It depends on the initial state s0 and therefore has to
be computed inside the algorithm.

Lines 2 to 6 do the initialization part of the algorithm. If Is0

G is empty then there
is nothing to solve because Prob∞ (s0, G) = 0 and thus we can give the answer right
away, otherwise the function:

init
(
Q, Is0

G , {Bi}i∈I , ϑ,MSCIU ,MCIS ,MTSU ,MTSS , ξ, β
)

is called. This function is described by Algorithm 6 and its tasks are as follows:

• To initialize the required maps that map BSCC indexes i ∈ Is0

G to the following
data:

i

i

i

i

i

i

i

i

136 CHAPTER 6. MODEL CHECKING CSL

Algorithm 6 init
(
Q, Is0

G , {Bi}i∈I , ϑ,MSCIU ,MCIS ,MTSU ,MTSS , ξ, β
)

1: Obtain:
{
S1

i

}
i∈IG

using Q and {Bi}i∈I

2: if ∃i ∈ Is0

G : s0 ∈ S1
i then

3: REACH := FALSE
4: ξ := ϑ
5: Allocate: MCIS , MTSS – maps of 1 element each
6: MSCIU [i] := [1, 1]
7: else
8: REACH := TRUE
9: R = |Is0

G |, n := 2 · R, ξ := n
√

ϑ, β := 2 ·
(
1 −√

ξ
)

10: Allocate: MSCIU , MCIS , MTSU , MTSS – maps of R elements each
11: end if
12: for all i ∈ Is0

G do
13: MCIS [i] := [0, 1]
14: end for
15: return REACH

MTSU – MTSU [i] stores a tuple
(
M, N,

−→
PN ,

−→
P′

N

)
for computing the c. i. of ps0

i

MTSS – MTSS [i] stores a tuple
(
si,

−→
S ,

−→
T
)

for computing the c. i. of πg
i with

si ∈ Bi being a chosen regeneration point and
−→
S with

−→
T being the required

sample vectors, see Section 5.6.

MSCIU – MSCIU [i] stores the c. i. of ps0

i

MCIS – MCIS [i] stores the c. i. of πg
i

• To compute the values of ξ, β that are implicit results of this algorithm. Here
ξ is the confidence for computing the c. i. of πg

i and β defines the confidence for
computing the c. i. of ps0

i , see lines 9 and 4.

• To initialize the c. i. of πg
i with [0, 1] that is a technical step, see line 12 to 14.

• To sort out the trivial case when all paths from s0 go to some BSCC Bi with
i ∈ Is0

G . In this case, see line 2 to 7, it is known that ps0

i = 1 and therefore we
initialize MSCIU [i] with {[1, 1]}, also we have to do simulation only to compute
the c. i. of πg

i and therefore we set ξ = ϑ.

• To return an explicit result TRUE if we have to use simulation to compute the
c. i. for some ps0

i , i.e. it is not a trivial case, and FALSE otherwise, see lines 3
and 8.

Note that, similar to
{
S0

i

}
i∈IG

, the set
{
S1

i

}
i∈IG

can be reused.

Back to Algorithm 5, on line 7 we obtain, possibly precomputed, P – the embedded
DTMC of Q, and −→q - the vector of exit rates for the matrix Q. We also initialize the
regeneration-cycle counter M s which we are going to use for all c. i. of πg

i . Lines 8 to 28
form the main loop of the algorithm, this cycle iterates until either we have a definite
answer to the model checking problem or we have reached both the maximum number

i

i

i

i

i

i

i

i

6.3. STEADY-STATE OPERATOR 137

of regeneration cycles when computing the c. i. of πg
i and the maximum number of ob-

servations and simulation depth in the samples needed for computing ps0

i for all i ∈ Is0

G .
The check for the latter is done using function moreIter (MTSU , M s, Nmax , Mmax).

Algorithm 7 confintUU
(
s0,P

B, j, {Bi}i∈I ,MTSU , β, I, INVD, . . .
)

Obtain: PB using G := Bj , BA,G :=
⋃

i∈I\{j} Bi and I := ∅(
M, N,

−→
PN ,

−→
P′

N

)
:= MTSU [j]

if ((I is odd) ∨ ((M ≥ Mmax))) ∧ (N < Nmax) then
N := min {N + ∆N , Nmax}

else
M := min {M + ∆M , Mmax}

end if
extendSamples

(
s0,P

B ,
−→
PN ,

−→
P′

N , M, N
)

/*Compute: IN and I
′

N*/

computeBordersUU
“

β,
−→
PN ,

−→
P′

N

”

while
“

INVD :=
“

IN ∩ I
′

N = ∅
””

∧ (M < Mmax) do

M := min {M + ∆M , Mmax}

extendSamples
“

s0,P
B ,

−→
PN ,

−→
P′

N , M, N
”

/*Compute: IN and I
′

N*/

computeBordersUU
“

β,
−→
PN ,

−→
P′

N

”

end while
return

h

A
g

l

“−→
PN

”

, Ag,t
r

“−→
P′

N

”i

In the beginning of the main cycle, line 9 to 15, for every j ∈ Is0

G , the c. i. of ps0

j is
recomputed if REACH = TRUE , i.e. it is not a trivial case, by invoking:

confintUU
(
s0,P

B, j, {Bi}i∈I ,MTSU , β, I, INVD , . . .
)

For brevity, we omitted some of the call parameters such as: Mmax , ∆M , Nmax , ∆N .
Function confintUU (. . .) is described by Algorithm 7. It computes the c. i. of ps0

j

by extending the sample size or the simulation depth. This function is based on the
main loop of Algorithm 4 and in case the invalid intervals IN and I

′

N are detected it
tries to cure the problem by increasing the sample size (cf. Section 6.2.5). In the latter
case, if the maximum sample size is reached then there is no hope of producing the
correct c. i. of Prob∞ (s0, G) and thus Algorithm 5 terminates (cf. lines 12 to 14).

Next, on line 17, function checkCI
(
Is0

G , ⊲⊳ , b,MSCIU ,MCIS , δ′
)

is called. The
behavior of this function is given by Algorithm 8 which main task is to compute and
check the current c. i. of Prob∞ (s0, G) against the probability constraint ⊲⊳ b. The
maps MSCIU and MCIS are among the arguments of the procedure because MSCIU [i]
contains the c. i. for ps0

i and MCIS [i] the c. i. for πg
i . Note that operations + and ∗

on the c. i. are done component wise. After the c. i. of Prob∞ (s0, G) is ready and it’s
width is less than δ′, Algorithm 3 is invoked to test the interval against the constraint
⊲⊳ b. The result is returned by function checkCI (. . .). Note that if the width of the
obtained c. i. is not less than δ′ the algorithm returns NN notifying Algorithm 5 that
more simulations is needed.

i

i

i

i

i

i

i

i

138 CHAPTER 6. MODEL CHECKING CSL

Algorithm 8 checkCI
(
Is0

G , ⊲⊳ , b,MSCIU ,MCIS , δ′
)

CINT := [0, 0]
for all i ∈ Is0

G do
CINT := CINT + MSCIU [i] ∗ MCIS [i]

end for
if width (CINT) < δ′ then

/*Use Algorithm 3 to answer the model-checking problem*/
return checkBoundVSConfInt (⊲⊳ , b,CINT)

else
return NN

end if

In case we still do not have a definite answer to the model-checking problem, lines 18
to 24 of Algorithm 5, we increase the number of regeneration cycles we want to consider
and after doing simulations recompute the c. i. of all πg

i with i ∈ Is0

G . Simulations and
computations of the c. i. are done within function confintSS (P,−→q , Bi,MTSS [i], M, ξ).
We do not provide pseudo code for it because its functionality is a straight-forward
consequence of the procedure given in Section 5.6.

At the end of the main cycle (line 26) we recompute the c. i. of Prob∞ (s0, G) and
check it against the constraint ⊲⊳ b using function checkCI (. . .).

Note that, since we bound the maximum sample size and simulation depth (like it
was done in Algorithm 4 on page 130), in line 29 we test whether the derived c. i. is
tight enough, and if it is not then we return the error value.

Convergence, confidence and efficiency

The c. i. of Prob∞ (s0, G) is based on a linear combination of c. i. for ps0

i and πg
i .

Therefore, in case of no bounds on the simulation depth N , the sample size M , and
Prob∞ (s0, G) 6= b, the a. s. convergence of Algorithm 5 is ensured by the a. s. conver-
gence of the c. i. for ps0

i (cf. Section 6.2.6) and πg
i .

The main cycle of Algorithm 5 has the termination conditions similar to the ones
of the Algorithm 4. Also, the same Algorithm 3 is used for comparing the c. i. to the
probability constraint. This implies that the confidence level for the definite answer of
the algorithm is at least ϑ if 0 < δ′ ≤ |Prob∞ (s0, G) − b|.

To discuss the efficiency of Algorithm 5 we provide some empirical observations.
Notice that the dependency of confidence ξ from the overall confidence ϑ, although
improved, is still rather poor, namely ξ is the n’th root of ϑ where n := 2 · R and
R = |Is0

G |. The procedure of computing the c. i. of Prob∞ (s0, G) involves producing
two independent samples for the unbounded-reachability problem which may result
in an invalid c. i. for ps0

i (cf. Algorithm 7). All this makes the suggested procedure
computationally heavy. Among other potential inefficiencies is that for different s0 ∈ S
the c. i. for ps0

i requires separate simulations whereas the c. i. and samples for πg
i can

be reused. The last reason for improving the provided algorithm is that the memory
needed for storing all required samples for ps0

i and efforts for storing or recomputing
PB matrices (cf. Algorithm 7) can be quite substantial.

The solution for the issues above can be as simple as computing probabilities ps0

i

i

i

i

i

i

i

i

i

6.3. STEADY-STATE OPERATOR 139

numerically. This allows, for any fixed i ∈ I, to compute the reachability probabilities
ps0

i for all s0 ∈ S at once with a predefined error bound ε. In terms of Algorithm 5, it
will exclude the use of the maps MSCIU and MTSU , significantly simplify functions
init (. . .), checkCI (. . .) and moteIter (. . .), and remove function confintUU (. . .). Also,
it will reduce the value of confidence ξ, making it an n’th root of ϑ with n := R. The
next subsection presents theory and model-checking algorithms for the outlined hybrid
approach.

6.3.2 The hybrid approach

This subsection presents a hybrid approach for model checking the S⊲⊳ b (G) operator,
based on discrete event simulation and numerical computations. Following the ideas
of Section 6.3.1, we intend to optimize the model-checking procedures by computing
reachability probabilities ps0

i using the well-known numerical approach. In the follow-
ing, we first consider the way of deriving a “hybrid” c. i. for probability Prob∞ (s0, G).
This interval will combine c. i. of the steady-state probabilities πg

i with the numerical
error bounds of reachability probabilities ps0

i . After that, we introduce the model-
checking algorithm for S⊲⊳ b (G) and compare it to the model-checking algorithm devised
in Section 6.3.1.

Deriving the “hybrid” confidence interval

For all i ∈ I, s0 ∈ S and errors εi, let us compute the bounds for ps0

i numerically, with
the help of the approach discussed in Section 1.2.1. This yields:

∀i ∈ I : p̃s0

i − εi ≤ ps0

i ≤ p̃s0

i + εi, (6.29)

where p̃s0

i is the probability computed numerically. For any i ∈ I, and a given confi-
dence ξs

i , as before, we have the c. i. of πg
i given by Equation (6.26).

Now under the assumption that for all i ∈ I we have p̃s0

i − εi, p̃s0

i + εi, Ai
l and Ai

r

in R[0,1], using Equation (6.25), we can provide a c. i. for Prob∞ (s0, G) in the form of
the following theorem.

Theorem 34 (The c. i. of the error) For the c. i. given by Equation (6.26), based
on independently obtained samples, and the error bounds given by Equation (6.29), the
following c. i. results:

Prob

(
K∑

i=1

(p̃s0

i − εi) · Ai
l ≤ Prob∞ (s0, G) ≤

K∑

i=1

(p̃s0

i + εi) · Ai
r

)
�

K∏

i=1

ξs
i ,

under the assumption that for all i ∈ I : p̃s0

i − εi, p̃s0

i + εi, Ai
l , A

i
r ∈ R[0,1].

Proof See the proof of Theorem 74 from Appendix C.2. �

As before, taking εi = ε and ξs
i = ξ for all i ∈ I yields:

Prob

(
K∑

i=1

(p̃s0

i − ε) · Ai
l ≤ Prob∞ (s0, G) ≤

K∑

i=1

(p̃s0

i + ε) · Ai
r

)
� (ξ)

n
, with n = K.

(6.30)

i

i

i

i

i

i

i

i

140 CHAPTER 6. MODEL CHECKING CSL

In practice, for any given s0 it suffices to compute the probability bounds of ps0

i for all
i ∈ IG and the c. i. of πg

i for all i ∈ Is0

G , because for all i ∈ I \ Is0

G we have πg
i = 0. This

reduces the number of numerical computations and the simulation effort. The latter is
due to computing ξ as an n’th root of the overall confidence ϑ with a possibly smaller
n = |Is0

G |.

Algorithm 9 steadyStateHybrid (Q, S⊲⊳ b (G) , s0, ϑ, ε, Mmax , ∆M , δ′)

Require: ∆M , Mmax ∈ N≥2

Require: ∆M is sufficiently large

1: Obtain: {Bi}i∈I ,
{
{ps0

i }s0∈S

}
i∈IG

, Is0

G

2: if Is0

G = ∅ then
3: return (0 ⊲⊳ b)
4: end if
5: /*Use Algorithm 10 to initialize MCIS , MTSS , ξ*/
6: initHybrid

`

I
s0
G , ϑ,MCIS ,MTSS , ξ

´

7: Obtain: P, −→q from Q, and set Ms := 0
8: /*Use Algorithm 11 to check the c. i. of Prob∞ (s0, G) against ⊲⊳ b*/

9: RESULT := checkCIHybrid

„

I
s0
G , ⊲⊳ , b, ε,

n

{ps0
i }

s0∈S

o

i∈IG

,MCIS , δ′
«

10: while ((RESULT = NN)
V

(Ms < Mmax)) do
11: inc (Ms, ∆M , Mmax)
12: for all i ∈ I

s0
G do

13: /*Use algorithm of Section 5.6 to compute the c. i. for π
g
i */

14: MCIS [i] := confintSS (P,−→q , Bi,MTSS [i], Ms, ξ)
15: end for
16: /*Use Algorithm 11 to check the c. i. of Prob∞ (s0, G) against ⊲⊳ b*/

17: RESULT := checkCIHybrid

„

⊲⊳ , b, ε,
n

{ps0
i }

s0∈S

o

i∈IG

,MCIS , δ′
«

18: end while

19: return isCITight

„

ε,
n

{ps0
i }

s0∈S

o

i∈IG

,MCIS , δ′
«

? RESULT : ERR

The model-checking algorithm

The hybrid approach is now summarized in the form of Algorithm 9. Below we discuss
this algorithm in more detail by explaining the changes in its arguments, preconditions
and the body, when compared to Algorithm 5.

First, notice that the parameters related only to the computations of the c. i. for ps0

i

disappeared, namely: Nmax and ∆N . Instead there is one new parameter ε that defines
the error bound for the numerical computations of probabilities ps0

i . The preconditions
are a subset of preconditions from Algorithm 5.

In the algorithm’s body (line 1) in addition to obtaining {Bi}i∈I and Is0

G we get

probabilities
{
{ps0

i }s0∈S

}
i∈IG

that should be computed with the error bound ε, note

that the auxiliary set
{
S0

i

}
i∈IG

does not have to be computed since we can define

Is0

G = {i ∈ IG |ps0

i 6= 0}.
In lines 2 to 6 the initialization part takes place. The difference here is that for a

i

i

i

i

i

i

i

i

6.4. TIME-INTERVAL UNTIL OPERATOR 141

non-trivial case of Is0

G 6= ∅, instead of calling function init (. . .) (cf. Algorithm 6), we
invoke function:

initHybrid
(
Is0

G , ϑ,MCIS ,MTSS , ξ
)

given by Algorithm 10. This function is just a simplified version of init (. . .) where we
only initialize maps MCIS , MTSS and the confidence ξ.

Further, see line 9, prior to the main loop of the algorithm, we call function:

checkCIHybrid

(
Is0

G , ⊲⊳ , b, ε,
{
{ps0

i }s0∈S

}
i∈IG

,MCIS , δ′
)

,

given by Algorithm 11. The latter one is again a simplified version of checkCI (. . .),
provided by Algorithm 8. The main difference here is that in order to construct the
c. i. of Prob∞ (s0, G) we use the exact probability bounds for each ps0

i , this procedure
is based on Equation (6.30).

The main cycle of Algorithm 9, see lines 10 to 18, has two stopping conditions,
namely: (i) the result of the model-checking problem is definite, (ii) we have reached
the maximum number of allowed regeneration cycles. Also the body of the main loop
contains no computations for the c. i. of ps0

i .
To conclude, we should note that the hybrid algorithm looks much simpler than the

one purely based on simulations. Among other improvements are the smaller values of
confidence ξ, and the fact that with a minor modification Algorithm 9 can be extended
to model check formula S⊲⊳ b (G) for all initial states s0 ∈ S by reusing probability
bounds for ps0

i along with the samples and the c. i. for πg
i .

6.4 Time-interval until operator

In this section we discuss a model-checking approach for the time-interval until oper-
ator P⊲⊳ b

(
A U[tl,tr] G

)
, with tl, tr ∈ R≥0 and tl ≤ tr. As opposed to the operators

P⊲⊳ b (A U G) and S⊲⊳ b (G), we do not simulate the embedded DTMC, but rather use
a continuous-time simulation technique. Our algorithm is based on computing the se-
quential c. i. for the probability Prob

(
s0, A U[tl,tr] G

)
using terminating simulation (cf.

Section 5.4) and then checking the resulting interval against the probability constraint
⊲⊳ b by means of Algorithm 3 (cf. page 110).

The rest of the section is organized as follows. First, we devise a simulation
procedure (based on terminating simulation) that allows to determine the c. i. of
Prob

(
s0, A U[tl,tr] G

)
. For this, we recall the notion of a path in the CTMC (S, Q, L).

Then we formally define a condition of satisfying the formula A U[tl,tr] G on a path in
terms of the path states and their arrival- and departure-times. The latter will result in

Algorithm 10 initHybrid
(
Is0

G , ϑ,MCIS ,MTSS , ξ
)

1: n := |Is0

G |, ξ := n
√

ϑ
2: Allocate: MCIS , MTSS – maps of n elements each
3: for all i ∈ Is0

G do
4: MCIS [i] := [0, 1]
5: end for

i

i

i

i

i

i

i

i

142 CHAPTER 6. MODEL CHECKING CSL

Algorithm 11 checkCIHybrid

(
Is0

G , ⊲⊳ , b, ε,
{
{ps0

i }s0∈S

}
i∈IG

,MCIS , δ′
)

CINT := [0, 0]
for all i ∈ Is0

G do
CINT := CINT + [ps0

i − ε, ps0

i + ε] ∗ MCIS [i]
end for
if width (CINT) < δ′ then

/*Use Algorithm 3 to answer the model-checking problem*/
return checkBoundVSConfInt (⊲⊳ , b,CINT)

else
return NN

end if

stopping criteria for the terminating simulation. Second, we summarize the complete
model-checking procedure in the form of an algorithm.

The simulation procedure and the confidence interval

Recall (cf. Section 1.1.2) that a CTMC can be represented as a composition of an
embedded DTMC P that gives the probability distributions for moving from one state
to another, and for each state s ∈ S an exponentially-distributed holding time ts with
rate qs = −qs,s, where qs,s is a diagonal element of the generator matrix Q. A path

σ ∈ Path
C in the CTMC is a sequence σ = s0 t0 s1 t1 . . . with P (si, si+1) > 0 and

ti ∈ R>0 for all i ∈ N. The time stamps ti denote the amount of time spent in state si.
Considering the path σ, let us define the arrival time tasi

=
∑i−1

j=0 tj and the departure

time tdsi
=
∑i

j=0 tj for the state si. Note that at the time tdsi
the transition to sate

si+1 occurs and therefore σ@t = si iff t ∈
[
tasi

, tdsi

)
.

The path σ satisfies the formula A U[tl,tr] G iff there exists t′ ∈ [tl, tr] such that
σ@t′ ∈ G and for all t < t′ we have σ@t ∈ A. The latter is iff there exists si ∈ σ such
that si ∈ G and

(
tasi

≤ tr
)
∧
(
tl < tdsi

)
(we are in one of the G states within the time

interval [tl, tr]), and if tasi
< tl then for all j ≤ i : sj ∈ A or else for all j < i : sj ∈ A

(for all time points before tl we reside in one of the A states).
In the following we are going to estimate the probability Prob

(
s0, A U[tl,tr] G

)
using

terminating simulation. For that we need to simulate a set of paths in the CTMC and
estimate the proportion of thereof satisfying the formula A U[tl,tr] G. The stopping
criteria for the state-by-state path generation with the last generated state si are as
follows:

A.
`

ta
si

< tl

´

∧ (si ∈ S \ A)

B.
`

ta
si

≤ tr

´

∧
`

tl < td
si

´

∧ (si ∈ S \ (A∪ G))

C.
`

ta
si

≤ tr

´

∧
`

tl < td
si

´

∧ (si ∈ G)

D.
`

td
si

> tr

´

These termination conditions are complementary and their meaning is as follows:

A. – a not A state is visited before the time tl.

B. – a not A and not G state is visited within the time interval [tl, tr].

C. – a G state is visited within the time interval [tl, tr].

i

i

i

i

i

i

i

i

6.4. TIME-INTERVAL UNTIL OPERATOR 143

D. – the path goes beyond the target time frame.

Let us have M paths among which Γg paths satisfy the given path formula. Then
Γg

M is the p. e. of the probability Prob
(
s0, A U[tl,tr] G

)
and for a given confidence ξ we

have the following c. i.

Prob
(
Ag

l (Γg) ≤ Prob
(
s0, A U[tl,tr] G

)
≤ Ag

r (Γg)
)
≈ ξ, (6.31)

where, since every path either satisfies the formula or not, we are in the settings of
Bernoulli trials and the Agresti-Coull c. i. borders can be used (cf Sections 5.7 and
6.2.2).

Now, when Equation (6.31) gives the c. i. of Prob
(
s0, A U[tl,tr] G

)
and the stopping

conditions for terminating simulation are known, we can provide a complete model-
checking procedure.

Algorithm 12 intervalUntil
(
Q, P⊲⊳ b

(
A U[tl,tr] G

)
, s0, ξ, Mmax , ∆M , δ′

)

Require: ∆M , Mmax ∈ N≥2

Require: ∆M is sufficiently large
Require: ξ ∈ R[0,1.0)

1: Obtain: P, −→q from Q, and I = S \ (A ∪ G)

2:
−→
Q := (0, 0), M := 0, β := 1 − ξ

3: repeat
4: M := min {M + ∆M , Mmax}
5: /*Use Algorithm 13 to extend the sample

−→
Q*/

6: extendSample
“

s0, I, G, tl, tr, P,−→q ,
−→
Q, M

”

7: /*Compute: A
g

l (Γg), Ag
r (Γg)*/

8: CINT := computeBordersIU
“

β,
−→
Q
”

9: /*Use Algorithm 3 to answer the model-checking problem*/
10: if width (CINT) < δ′ then
11: RESULT := checkBoundVSConfInt (⊲⊳ , b,CINT)
12: end if

13: until ((RESULT = NN)
∧

(M < Mmax))
14: return (width (CINT) ≥ δ′) ? ERR : RESULT

The model-checking algorithm

The approach to model-checking P⊲⊳ b

(
A U[tl,tr] G

)
is summarized in Algorithm 12.

Below we discuss this algorithm in detail by explaining its arguments, preconditions
and the body.

The parameters of Algorithm 12 are mostly typical to the model-checking approach
discussed in this chapter and have been described in the previous sections. The new
parameter are: P⊲⊳ b

(
A U[tl,tr] G

)
– the model-checking problem, ξ – the desired con-

fidence of the result.
The preconditions on ∆M and Mmax are the same as in Algorithm 5 and on the

confidence ξ is trivial. Further we describe the algorithm line wise.

i

i

i

i

i

i

i

i

144 CHAPTER 6. MODEL CHECKING CSL

In line 1, using the generator matrix Q, we obtain the vector of exit rates −→q , the
embedded DTMC P and the set of illegal states I. Note that they all can be stored
and reused when model checking the same problem for another initial state. Next,
in line 2 we perform some simple variable initialization. This includes initializing the

sample
−→
Q which has two components: first, the number of sampled paths, and second,

the number of thereof satisfying the path formula A U[tl,tr] G. The main cycle of the
algorithm takes place in lines 3 to 13, it iterates until we either get a definite answer
to the model-checking problem or reach the maximum sample size.

Algorithm 13 extendSample
(
s0, I,G, tl, tr,P,−→q ,

−→
Q, Mn

)

1: (M, Γg) :=
−→
Q

2: for j := M ; j < Mn; inc (i) do
3: s := s0, tas := 0, tds := simulateTime (qs)
4: while

(
tds ≤ tl

)
∧ (s ∈ A) do

5: s := simulateState (s,P)
6: tas := tds , tds := tds + simulateTime (qs)
7: end while
8: if (tas = tl) ∨ (s ∈ A) then
9: while (s 6∈ I) ∧ (s 6∈ G) ∧

(
tds ≤ tr

)
do

10: s := simulateState (s,P)
11: tds := tds + simulateTime (qs)
12: end while
13: if s ∈ G then
14: Γg := Γg + 1
15: end if
16: end if
17: end for
18:

−→
Q := (Mn, Γg)

Inside the main loop we first increment the number of observations, see line 4,

and then in line 6 call function extendSample
(
s0, I,G, tl, tr,P,−→q ,

−→
Q, Mn

)
given by

Algorithm 13. The main purpose of this function is to perform terminating simulations.

As a result, the function provides the extended sample
−→
Q.

Let us discuss Algorithm 13 in a little more detail. Its first line is dedicated to
obtaining the current sample size M and the number of successful paths Γg. Lines
from 2 to 17 are devoted to the sample-path generation. First, in line 3 the initial
state is taken to be s0, the arrival time is set zero and the departure time is simulated.
Further we split the path-generation procedure into the following two simulation parts:

1. Lines 4–7: until the time tl checking for the termination condition A.

2. Lines 9–12: until the time tr checking for the termination conditions B. – D.

It is important to note that the conditional operator on lines 8–16 ensures that the
second part of the simulation procedure is invoked only if the termination condition A.
is not satisfied. The conditional operator on lines 13–15 checks if the path generation

i

i

i

i

i

i

i

i

6.5. CONCLUSION 145

was terminated due to the resulted path satisfying the formula A U[tl,tr] G. Finally,

the sample
−→
Q is updated with the new values in line 18.

Back to Algorithm 12, after the call of function extendSample (. . .) we have a valid
sample of observations, using which we can compute the c. i. of Prob

(
s0, A U[tl,tr] G

)

as given by Equation (6.31). The latter is done in line 8 and the obtained c. i., if it is
tight enough, is checked against the probability constraint ⊲⊳ b, using Algorithm 3, see
lines 10 to 12. If the result is definite then the main cycle terminates and the answer
to the model-checking problem is returned in line 14. Note that, as before, we return
the error result if we are unable to reach the desired width of the c. i..

To conclude we must say that, in case of Prob
(
s0, A U[tl,tr] G

)
6= b and no con-

straints on the sample size, the a. s. convergence of the algorithm is guaranteed by the
a. s. convergence of the c. i. borders.

6.5 Conclusion

Recent developments in verification of CSL properties using discrete-event simulation
resulted in the model-checking techniques based on hypothesis testing [144, 121, 122].
Unfortunately these techniques support only a subset of CSL, namely the logic without
the steady-state operator, and have from three to five main parameters influencing the
verification process. In this chapter we devised new and simpler simulation-based algo-
rithms for model-checking all the main operators of CSL: the interval-until, unbounded-
until and steady-state operator.

Our algorithms are based on discrete event simulation, sequential confidence inter-
vals and can be easily adapted to model checking of the corresponding PCTL properties.
Also, they require only two parameters, that are common for statistical model checking:
the desired confidence ξ and the maximum width of the confidence interval δ′. Note
that, the algorithms employ a naive sequential procedure for deriving c. i. This proce-
dure does not take into account a possible decrease of confidence levels. In the future
we plan to employ proper sequential c. i. algorithms, such as described in [44, 30].

One of the key assumptions in our approach was that we can deduce the Markov
chain structure. The reason for that is that we need to know about the BSCCs of the
Markov chain. Since we work with finite state Markov chains, the detection of BSCCs
can be done using on-the-fly model generation. Therefore our algorithms can be used
without pre-computation of the Markov chain.

To show the feasibility of our approach, in Chapter 7 we provide an experimental
comparison between the model-checking techniques given in this chapter, implemented
in MRMC v1.3, and the algorithms based on hypothesis testing [122, 144], realized in
Ymer v3.0 and VESTA v2.0.

i

i

i

i

i

i

i

i

146 CHAPTER 6. MODEL CHECKING CSL

i

i

i

i

i

i

i

i

Chapter 7

Experiments

In this chapter we provide a comparative experimental study of the simulation-based
model-checking techniques for CSL. We consider the sequential c. i. techniques given in
Chapter 6 versus the algorithms based on hypothesis testing [122, 144]. The former ones
are integrated in MRMC v1.3 (cf. Chapter 2) whereas the latter ones are implemented
in Ymer v3.0 and VESTA v2.0 (cf. Section 1.4).

Note that, Ymer and VESTA do not support model checking of the steady-state
operator and therefore in the comparison below we only consider the time-interval
(time-bounded), and unbounded-until operators. Also we do not discuss model check-
ing of formulas with nested probabilistic operators, e. g., for the property P⊲⊳ b (A U G)
we assume that the sets A and G are computed without using simulations. The latter
allows us to relax the conditions on the model-checking parameters of VESTA.

Our experiments are aimed at the following main points: (i) the verification time,
i. e., the required time to verify a formula on a Markov chain; (ii) the confidence levels,
i. e., the match between the theoretically guaranteed confidence and the one obtained
in practice; (iii) the peak memory usage (VSZ), i. e., the maximal amount of virtual
memory (RAM + swap) needed by the tools during the verification.

For our experiments we have chosen two CTMC case studies: CPS and TQN. The
detailed description of these models is given in Section 1.3. These case studies are also
used for performance evaluation of various model-checking tools in Section 2.4. As
before, care is taken that equivalent input models are used for all the tools.

Further, in Section 7.1 we first introduce the model-checking parameters of Ymer
and VESTA, and relate them with the parameters of MRMC. Then, in Section 7.2
the experimental setup is provided. Section 7.3 reports the experimental data and
Section 7.4 summarizes the experimental results.

7.1 Tool parameters

For a fair comparison of model-checking techniques it is vital to have the input param-
eters matching each other in the best possible way. Thus, in this section we present,
explain, and relate the main simulation parameters of MRMC, Ymer and VESTA.

147

i

i

i

i

i

i

i

i

148 CHAPTER 7. EXPERIMENTS

MRMC. Recall that the c. i.-based techniques for model checking the properties
P⊲⊳ b (A U G) and P⊲⊳ b

(
A U[t1,t2] G

)
in a state s0 ∈ S (cf. Chapter 6) have two main

inputs:

ξ – the desired confidence of the result

δ′ – the upper bound on the width of the considered c. i.

If for p̃ = Prob (s0, A U G) or p̃ = Prob
(
s0, A U[t1,t2] G

)
correspondingly we choose δ′

such that (cf. Section 108):
δ′ ≤ |b − p̃|, (7.1)

then the confidence of getting the correct answer to the model-checking problem is
guaranteed to be at least ξ.

Ymer [141]. Sequential hypothesis testing (acceptance sampling) realized in Ymer
requires the following main parameters:

αy – the desired probability of the false-positive answer

βy – the desired probability of the false-negative answer

δy – the half width of the indifference region which is defined as (b − δy, b + δy)

The false-positive and false-negative probabilities apply if δy is chosen in such a way
that p̃ = Prob

(
s0, A U[t1,t2] G

)
does not belong to the indifference region. Recall that

Ymer does not support the unbounded-until operator.
Clearly, for a given model-checking problem it is possible to have only one type

of incorrect answers, either false positive or false negative. Thus, when matching the
parameters of Ymer to those of MRMC, one should take 1 − ξ = αy = βy. Also,
we should have δ′ = δy because fulfilling Equation (7.1) is equivalent to choosing δ′

such that p̃ does not belong to the open interval (b − δ′, b + δ′). The latter is due to

considering only the c. i.
[
Al

(−→
X
)

, Ar

(−→
X
)]

such that Ar

(−→
X
)
− Al

(−→
X
)

< δ′. (cf.

Section 108).

VESTA [123]. The tool realizes model-checking algorithms based on Monte Carlo
simulation of the model and simple hypothesis testing of the samples, as opposed
to sequential hypothesis testing realized in Ymer. The model-checking algorithm of
VESTA takes the following parameters:

• General:

αv – the desired probability of the false-positive answer

βv – the desired probability of the false-negative answer

δv
1 – the half width of the indifference region

• Specific for unbounded-until formulae:

pv
⊥ – the stopping probability (pv

⊥ > 0)

δv
2 – the width of the indifference region for the problem P=0 (A U G)

i

i

i

i

i

i

i

i

7.2. EXPERIMENTAL SETUP 149

The first three parameters are the same as for Ymer and the last two are added specif-
ically for model checking the unbounded-until operator. For the latter, VESTA adds
an extra state, called the “termination” state, to the model. Every state of the original
model is then extended with a transition to the termination state which is taken with
probability pv

⊥ and the existing transition probabilities are renormalized to form proper
probability distributions. Such model modification allows VESTA to avoid considering
infinite paths when model checking the unbounded-until operator.

To ensure the desired error probabilities αv and βv, VESTA requires the following
two conditions to be fulfilled:

1. The probability p̃ = Prob (s0, A U G) or p̃ = Prob
(
s0, A U[t1,t2] G

)
must not lie

in the range (b − δv
1 , b + δv

1).

2. The probability p̃ = Prob (s0, A U G) must not lie in the range:

(
0,

δv
2

p
(|S|−1)
m · (1 − pv

⊥)
(|S|−1)

]
(7.2)

where pm is the smallest non-zero transition probability in the model.

Note that, since we assume formulas without nested probabilistic operators, the con-
ditions above are the relaxed versions of those given in [123].

Condition 1. is essentially the same as the condition on δy for Ymer. Therefore,
for the experiments we take αv = βv = αy = βy and δv

1 = δy.
Condition 2. is new and neither has any direct match in Ymer, because it does not

support the unbounded-until operator, nor in MRMC, because our approach does not
modify the original model. This condition causes serious problems when model checking
large models due to the exponents in the divider of the right border of Interval (7.2).
More specifically, the values of pm and (1 − pv

⊥) are typically less than one and the state

space S consists of millions of states. In this setting the value of p
(|S|−1)
m ·(1 − pv

⊥)
(|S|−1)

becomes extremely small, requiring a drastic decrease of δv
2 or pv

⊥ in order to keep the
probability Prob (s0, A U G) outside the interval (7.2). Moreover, according to [122]
the decrease of pv

⊥ dramatically increases the model-checking times1. Therefore in our
experiments we do not try to satisfy Condition 2 but rather use the default tool values
for pv

⊥ and δv
2 .

7.2 Experimental setup

Every experiment, unless stated otherwise, was repeated 100 times. We report average
verification times2 in milliseconds and use the logarithmic scale for our plots. The
memory-usage statistics are collected the same way as described in Section 2.4 and
we are interested in the peak virtual-memory usage (VSZ) reported in megabytes.
The confidence levels for every tool are computed as the average number of successful
model-checking runs for the given experiment.

1The same increase of verification time is likely to happen when δv
2 is decreased.

2We rely on model-checking times reported by the tools.

i

i

i

i

i

i

i

i

150 CHAPTER 7. EXPERIMENTS

All experiments were performed on a cluster-computer node with two 2.33 GHz
Intel Dual-Core Xeon processors (64-bit) and 16 GB of RAM. The operating system is
Suse Linux, because it is supported by all the tools.

The main tool parameters were set as follows: 1 − ξ = αy = βy = αv = βv = 0.05,
δ′ = δy = δv

1 = 0.01, pv
⊥ = 0.01 and δv

2 = 0.1 (cf. Section 7.1).

7.3 Experimental data

Before we proceed with the experimental results, for a better understanding and inter-
preting the experimental data, let us recall the following important differences between
the considered tools:

1. VESTA, unlike MRMC and Ymer, is implemented in Java, therefore:

(a) VESTA can be expected to be slower when compared to MRMC and Ymer.

(b) The VSZ values for VESTA reflect the total memory allocated by JVM.

2. VESTA uses simple hypothesis testing whereas Ymer uses sequential. Therefore,
we expect VESTA to be slower than Ymer, since (theoretically) to achieve the
same level of confidence, sequential hypothesis testing should require a smaller
sample size than simple hypothesis testing.

3. MRMC, unlike Ymer and VESTA, works with the pre-generated CTMC, thus:

(a) The VSZ values for MRMC should reflect the growth of the model size.

(b) When simulating a path in the model, MRMC has to traverse through the
sparse-matrix representation of the CTMC. This can seriously increase the
model-checking times on larger models due to a constant need for randomly
accessing the elements of a large data structure.

4. Ymer and VESTA, unlike MRMC, do not provide the probability estimates when
model checking probabilistic operators. Ymer has a special option that allows to
request such estimates. Below we denote the runs of Ymer with this option “on”
as Ymer P. Note that Ymer P implements sequential confidence interval based
approach described in [108].

5. Ymer and VESTA, unlike MRMC, can only verify properties in the initial state of
the model. Thus all further results correspond to model checking CSL formulas
in the initial state.

6. As it was discussed in Sections 6.1.3 and 7.1, MRMC requires the c. i. of the width
that is twice smaller than the width of the corresponding indifference regions of
Ymer and VESTA. The latter may cause MRMC to be more accurate because
reaching a tighter c. i. requires larger statistics. The same reason can cause a
lower performance of MRMC due to the large number of required observations.

i

i

i

i

i

i

i

i

7.3. EXPERIMENTAL DATA 151

N 3 6 9 12 15 16 17 18

states 36 576 6912 73728 737280 1572864 334233 7077888

Prob
`
true U[0,80] busy1

´
1.0000 0.9999 0.9998 0.9987 0.9951 0.9932 0.9909 0.9882

Prob
`
true U[40,80] serve1

´
0.9999 0.9988 0.9888 0.9657 0.9326 0.9203 0.9075 0.8944

Prob (poll1 U serve1) 0.0016 0.0008 0.0005 0.0004 0.0003 0.0003 0.0002 0.0002
Prob (¬serve2 U serve1) 0.5213 0.5381 0.5406 0.5405 0.5396 0.5393 0.5389 0.5386

Table 7.1: The numerically-computed probabilities for the CPS case study.

7.3.1 Cyclic Server Polling System (CPS)

For this case study we verified one bounded-until, one interval-until and two unboun-
ded-until formulas on the models with different number of stations (N). The tool
settings (cf. Section 7.2) are expected to guarantee the 95% accuracy of the verification
results. The exceptions are the time-interval until for all the tools and the unbounded-
until formulas when model checked with VESTA. The model state-space sizes and
the numerically-computed probabilities for the considered properties are presented in
Table 7.1. They help to explain the obtained results.

P≥0.95

(
true U[0,80] busy1

)
– the probability that station 1 becomes busy within 80

time units is at least 0.95. The model-checking times and peak memory consumption
for this property are given in Figure 7.1. Note that all the tools showed 100% accuracy.

Figure 7.1(a) indicates that MRMC is (much) faster than Ymer and VESTA. An
important observation is that the verification times for Ymer roughly double when the
tool is asked to estimate the probabilities. The clear distinction in performance of
Ymer and Ymer P is caused by the difference in the used simulation techniques. The
latter allowed VESTA to overtake Ymer P after N = 16.

Figure 7.1(a) shows the peak memory consumption of the tools. Clearly, Ymer and
VESTA both have constant memory usage and the VSZ of MRMC, as predicted, grows
when increasing the number of stations N . Remember that both Ymer and VESTA
do not generate the complete state space of the input model and the memory needed
for sampling seems to be insignificant. Also, the large memory consumption of VESTA
is dictated by the amount of memory acquired by the JVM. The behavior depicted in
Figure 7.1(b) is the same for all the properties we verified on the CPS case study and
therefore we provide it only once.

P≥0.99

(
true U[40,80] serve1

)
– the probability that station 1 is served within the time

interval [40, 80] is at least 0.99. Figure 7.2 provides the model-checking times and
confidence estimates for this property. As VESTA does not support interval-until
formulas, it is not included in the figures.

Figure 7.2(b) shows that the confidence levels for N ∈ {6, 9} are compromised,
especially in case of Ymer and Ymer P. This happens because the corresponding prob-
ability values (cf. Table 7.1) fall in the indifference region. Moreover, Condition (7.1)
required by MRMC for ensuring the confidence ξ = 0.95 is also violated. One of the
reasons why MRMC provides more accurate answers is that our algorithm first simu-
lates until the c. i. is tighter than δ′ and then continues simulation until it reaches the

i

i

i

i

i

i

i

i

152 CHAPTER 7. EXPERIMENTS

N 2 10 50 100 255 511 1023

states 15 231 5151 20301 130816 523776 2096128

Prob
`
true U[0,2] full

´
0.0262 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Prob
`
true U[0.5,2] full

´
0.0225 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Prob
`
true U[0,10] full1

´
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Prob (¬full1 U full2) 0.0177 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 7.2: The numerically-computed probabilities for the TQN case study.

definite answer to the model-checking problem. This increases the accuracy because
the resulting c. i. can be much shorter than δ′. Another reason is that MRMC uses
Agresti-Coull c. i. that is known to have coverage probability that exceeds the specified
confidence levels.

The model-checking times given in Figure 7.2(a) indicate that the accuracy of
MRMC comes at a price, see the peak for N = 9. In general, MRMC is up to 8
times faster than Ymer P but is slower than Ymer. The performance of the latter
one is improving with the growth of N . The reason for that is likely to be the rapid
increase of distance between the values of Prob

(
true U[40,80] serve1

)
, cf. Table 7.1, and

the probability bound of the formula.

P≥0.2 (poll1 U serve1) – the probability that station 1 is served after being polled is
at least 0.2. Both MRMC and VESTA showed 100% accuracy when model checking
this property. The performance results given in Figure 7.3(a) indicate that the time
required by VESTA is almost constant for all model sizes. In general MRMC is at least
10 times faster than VESTA.

P≥0.5 (¬serve2 U serve1) – the probability that station 1 is served before station 2 is
at least 0.5. Figure 7.3(b) provides the model-checking times for MRMC which once
again showed 100% accuracy in model-checking results. The plots for VESTA are not
present because it did not terminate within the 15 minutes time-out (compared to
seconds required by MRMC).

7.3.2 Tandem Queuing Network (TQN)

For this case study we verified two bounded-until, one interval-until and one unbounded-
until operator on the models with different queue capacities (N). The tool settings (cf.
Section 7.2) are expected to guarantee the 95% accuracy of the verification results.
The numerically-computed probabilities for the considered properties, cf. Table 7.2,
help to explain the obtained results. Note that, since the parameter N is changed in a
non-linear manner, the horizontal axis of the plots given in this section is logarithmic.

P≤0.01

(
true U[0,2] full

)
– the probability that both queues become full within 2 time

units is at most 0.01. The peak memory consumption and confidence estimates for this
property are given in Figure 7.4.

i

i

i

i

i

i

i

i

7.4. CONCLUSION 153

The peak memory usage in Figure 7.4(a) is similar to that of the CPS case study.
As before, the memory consumption is the same for all the properties we verified and
therefore we provide it only once.

The confidence estimates in Figure 7.4(b) exhibit a slight decrease of confidence for
Ymer and VESTA at N = 2. This can be explained by the fact that the corresponding
value of Prob

(
true U[0,2] full

)
(cf. Table 7.2) is relatively close to the probability

bound. Still, the confidence levels stay above the theoretically-predicted level.
The model-checking times are given in Figure 7.5(a). There are no results for

Ymer P because it was not terminating within the 15 minutes time-out. Similarly
to the previous results, MRMC is generally faster than the other tools. The peak in
verification times at N = 2 is the price MRMC pays for being 100% accurate.

P≤0.1

(
true U[0.5,2] full

)
– the probability that both queues become full within time

interval [0.5, 2] is at most 0.1. For this property all the tools showed 100% accuracy.
Once again, Ymer P was not able to finish verification within 15 minutes and therefore
is not present. The performance results given in Figure 7.5(b) show the behavior similar
to the one for P≤0.01

(
true U[0,2] full

)
.

P≤0.98

(
true U[0,10] full1

)
– the probability that the first queue becomes full within

10 time units is at most 0.98. In this case Ymer P coped with the property fine and all
the tools were 100% accurate. The model-checking times, given in Figure 7.6(a), are
similar to the ones for the previous two properties.

P≤0.03 (¬full1 U full2) – the probability that the second queue becomes full before
the first queue is at most 0.03. Both, VESTA and MRMC were completely accurate
in their model-checking results. The verification times shown in Figure 7.6(b) reflect
that MRMC is at least 6 times faster than VESTA which exhibits asymptotic model-
checking times. The times for MRMC, as it is the case for all considered properties,
steadily grow with the size of the model.

7.4 Conclusion

In this chapter we presented the experimental comparison between the model-checking
techniques given in Chapter 6, implemented in MRMC v1.3, and the algorithms based
on hypothesis testing [122, 144], realized in Ymer v3.0 and VESTA v2.0. The tool
parameters and the input models were matched as closely as possible, see Section 7.1,
providing a relatively fair comparison obscured only by the tool differences explained
in the beginning of Section 7.3. Each experiment was repeated 100 times guaranteeing
a good confidence in the results of this comparison.

It was shown that all the tools fulfill the theoretically-predicted confidence levels.
Moreover, very often the provided accuracy was reaching 100% which can be explained
by the relatively large distance between the estimated probabilities and the probability
bounds of the properties. Unlike for Ymer and VESTA, the peak-memory consumption
of MRMC grows linearly with the growth of the model sizes. The latter is due to using
the pre-generated Markov chain, as opposed to the on-demand state-space generation.

i

i

i

i

i

i

i

i

154 CHAPTER 7. EXPERIMENTS

On average, and especially on smaller models, MRMC was several times faster
than the other tools. Also, for some properties Ymer P and VESTA were not able to
provide answers within a reasonable time. Note that Ymer P uses sequential confidence
interval based approach described in [108]. Another important observation is that the
verification times of MRMC grow faster, with the increase of model sizes, than the
times of Ymer and VESTA. We anticipate that this is due to the use of the pre-
generated state space but further investigation is required to obtain more insight into
this phenomenon.

The results obtained on TQN and CPS case studies show that in most cases MRMC
runs faster, provides more accurate results, and can handle more properties than the
above mentioned tools. The reasons for that might be: a more efficient implementation;
the use of Agresti-Coull c. i.; specific sequential procedure; and the use of the c. i. that
are tighter than the indifference regions used in tools based on hypothesis testing. Our
results do not necessarily mean that the algorithms suggested in Chapter 6 are more
efficient than the ones realized in Ymer and VESTA. For a better comparison of the
underlying techniques, we need to compare the required sample sizes, since the latter
is a common criteria for evaluating the efficiency of simulation based algorithms.

i

i

i

i

i

i

i

i

7.4. CONCLUSION 155

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
Ymer

Ymer P
VESTA

(a) model check time

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18

M
ax

im
um

 V
S

Z
, M

b

N

MRMC
Ymer

Ymer P
VESTA

(b) peak memory

Figure 7.1: CPS : P≥0.95

(
true U[0,80] busy1

)

i

i

i

i

i

i

i

i

156 CHAPTER 7. EXPERIMENTS

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
Ymer

Ymer P

(a) model check time

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 2 4 6 8 10 12 14 16 18

C
on

fid
en

ce
, p

ro
ba

bi
lit

y

N

MRMC
Ymer

Ymer P

(b) confidence

Figure 7.2: CPS : P≥0.99

(
true U[40,80] serve1

)

i

i

i

i

i

i

i

i

7.4. CONCLUSION 157

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
VESTA

(a) P≥0.2 (poll1 U serve1)

 1000

 10000

 2 4 6 8 10 12 14 16 18

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC

(b) P≥0.5 (¬serve2 U serve1)

Figure 7.3: CPS, model check time

i

i

i

i

i

i

i

i

158 CHAPTER 7. EXPERIMENTS

 1

 10

 100

 1000

 1 10 100 1000

M
ax

im
um

 V
S

Z
, M

b

N

MRMC
Ymer

VESTA

(a) peak memory

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1 10 100 1000

C
on

fid
en

ce
, p

ro
ba

bi
lit

y

N

MRMC
Ymer

VESTA

(b) confidence

Figure 7.4: TQN : P≤0.01

(
true U[0,2] full

)

i

i

i

i

i

i

i

i

7.4. CONCLUSION 159

 1

 10

 100

 1000

 1 10 100 1000

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
Ymer

VESTA

(a) P≤0.01

`
true U[0,2] full

´

 1

 10

 100

 1000

 1 10 100 1000

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
Ymer

(b) P≤0.1

`
true U[0.5,2] full

´

Figure 7.5: TQN, model check time

i

i

i

i

i

i

i

i

160 CHAPTER 7. EXPERIMENTS

 0.1

 1

 10

 100

 1000

 1 10 100 1000

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
Ymer

Ymer P
VESTA

(a) P≤0.98

`
true U[0,10] full1

´

 1

 10

 100

 1000

 10000

 1 10 100 1000

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
VESTA

(b) P≤0.03 (¬full1 U full2)

Figure 7.6: TQN, model check time

i

i

i

i

i

i

i

i

Part III

Conclusion

161

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

Chapter 8

Concluding remarks

In this work, we contributed to four important aspects of probabilistic model checking:

• The development of an efficient model checker: our tool, called MRMC, supports
model checking of DTMCs, CTMCs and MRMs.

• The improvement of model-checking algorithms: we developed a precise on-the-fly
steady-state detection procedure for time-bounded until operator of CSL.

• The efficiency of the state-space reduction techniques: we empirically investigated
the effect of bisimulation minimization.

• The development of simulation-based model-checking techniques: we proposed
effective verification algorithms for all main operators of CSL.

Below we briefly summarize our results and provide future research directions. Note
that, more detailed conclusions are provided at the end of the corresponding chapters.

Markov Reward Model Checker. We developed a model checker that supports
DTMC, CTMC and MRM models, allowing for model checking PRCTL and CSRL
properties. Our experiments show that MRMC is highly competitive with other tools,
especially when applied to models that have up to several million states. The tool is
used in several third-party projects aimed at: the validation and performance evalua-
tion of Stochastic Well-formed Nets, counter-examples generation, and model checking
CTMDPs.

In the future, we expect to extend MRMC with the algorithms for CTMDP model
checking [12], counter-example generation [55], simulation-based model checking algo-
rithms and state-space reduction techniques, such as backwards and weak bisimula-
tion [13].

Steady-State Detection for Time-Bounded Reachability. In this study first
we refined error bounds for existing standard transient analysis and for time-bounded
reachability algorithms that incorporate on-the-fly steady-state detection and we de-
vised a simple technique for precise steady-state detection. Our backward algorithm
increases the runtime by a factor two, and requires two extra probability vectors. For

163

i

i

i

i

i

i

i

i

164 CHAPTER 8. CONCLUDING REMARKS

the forward algorithm there is no increase of run time, and no additional space is re-
quired. In both cases the approach guarantees the avoidance of premature steady-state
detection. Note that, although for the backward algorithm the computation time is
doubled (prior to reaching the steady-state, at some time t′) the verification time for
after approximately 2 · t′ is reduced.

One of the possible extensions of this work is to derive a simple technique for
estimating the convergence rate of CTMCs. This would allow to avoid using precise
steady-state detection when the steady-state is sure not to be reached, thus optimizing
the performance.

Bisimulation Minimization. Our experiments show that, like in traditional model
checking, in probabilistic setting using bisimulation minimization can result in up to
exponential state-space reduction. On top of that, and unlike in traditional model
checking, a substantial reduction in verification time can be obtained (up to a factor
50). For measure-driven bisimulation for models without rewards, this speedup comes
with almost no memory penalty whereas for ordinary bisimulation some experiments
showed an increase of peak memory up to 50%. In our case studies with rewards, we
experienced a reduction in peak memory use. In general, we observed that verification-
time reductions strongly depend on the number of transitions in the Markov chain, its
structure, and the convergence rate of numerical computations. A case study using
bisimulation minimization and symmetry reduction showed that, although the latter
one is faster, the former one provides a much coarser state-space partitioning.

In the future we plan to investigate combinations of symmetry reduction with bisim-
ulation minimization, and to extend our experimental work towards MDPs and simu-
lation preorders.

Model Checking by Discrete Event Simulation. Up till now, the simulation
algorithms for verifying CSL properties on CTMCs did not support the steady-state
operator. Moreover, these algorithms, based on hypothesis testing, have too many pa-
rameters, influencing the verification process, and the latter complicates their usability.
In our work we devised new and simple algorithms, based on sequential confidence in-
tervals, that allow for model checking of all the main CSL operators: the interval until,
unbounded until and steady state. These algorithms can be easily adapted to model
checking of the corresponding PCTL properties and also require only two parameters
that are common to statistical model checking: the desired confidence and the maxi-
mum width of the confidence interval. The experiments show that the MRMC based
implementation of the suggested algorithms is generally faster and provides more ac-
curate results than the model checkers based on hypothesis testing (Ymer, VESTA).
In addition, MRMC could handle more properties.

Unfortunately, our experimental comparison does not take into account some key
differences between the considered tools and the underlying algorithms. Therefore, we
plan to perform further investigation on the experimental as well as algorithmic levels.
For that we need to study and compare the sample sizes required by the considered
techniques and to perform more experiments.

i

i

i

i

i

i

i

i

Bibliography

[1] Gul Agha, José Meseguer, and Koushik Sen. PMaude: Rewrite-based Specifica-
tion Language for Probabilistic Object Systems. Electronic Notes in Theoretical
Computer Science, 153(2):213–239, 2006.

[2] Husain Aljazzar and Stefan Leue. Extended Directed Search for Probabilistic
Timed Reachability. In Eugene Asarin and Patricia Bouyer, editors, Formal
Modeling and Analysis of Timed Systems (FORMATS), volume 4202 of LNCS,
pages 33–51. Springer, 2006.

[3] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods in
System Design, 15(1):7–48, 1999.

[4] Suzana Andova, H. Hermanns, and Joost-Pieter Katoen. Discrete-Time Rewards
Model-Checked. In K.G. Larsen and P. Niebert, editors, Formal Modeling and
Analysis of Timed Systems (FORMATS), volume 2791, pages 88–104. LNCS,
Springer, 2003.

[5] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Model-
checking continuous-time Markov chains. ACM Transactions on Computational
Logic, 1(1):162–170, 2000.

[6] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. It Usually Works: The Temporal Logic of Stochastic
Systems. In P. Wolper, editor, Computer Aided Verification (CAV), volume 939
of LNCS, pages 155–165. Springer, 1995.

[7] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico
Macii, Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and their
applications. In International Conference on Computer-Aided Design (ICCAD),
pages 188–191. IEEE Computer Society, 1993.

[8] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-Checking Al-
gorithms for Continuous-Time Markov Chains. IEEE Transactions on Software
Engineering, 29(6):524–541, 2003.

[9] Christel Baier, Frank Ciesinski, and Marcus Größer. ProbMela and verification
of Markov decision processes. ACM SIGMETRICS Performance Evaluation Re-
view, 32(4):22–27, 2005.

165

i

i

i

i

i

i

i

i

166 BIBLIOGRAPHY

[10] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Ka-
toen. Model Checking Continuous-Time Markov Chains by Transient Analysis.
In E. Allen Emerson and A. Prasad Sistla, editors, Computer Aided Verification
(CAV), volume 1855 of LNCS, pages 358–372. Springer, 2000.

[11] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Ka-
toen. On the Logical Characterisation of Performability Properties. In Ugo
Montanari, Jos D. P. Rolim, and Emo Welzl, editors, International Colloquium
on Automata, Languages and Programming (ICALP), volume 1853 of LNCS,
pages 780–792. Springer, 2000.

[12] Christel Baier, Holger Hermanns, Joost-Pieter Katoen, and Boudewijn R.
Haverkort. Efficient computation of time-bounded reachability probabilities in
uniform continuous-time Markov decision processes. Theoretical Computer Sci-
ence, 345(1):2–26, 2005.

[13] Christel Baier, Holger Hermanns, Joost-Pieter Katoen, and Verena Wolf. Bisim-
ulation and Simulation Relations for Markov Chains. Electronic Notes in Theo-
retical Computer Science, 162:73–78, 2006.

[14] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, Cambridge, MA, USA, 2008.

[15] Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena Wolf. Com-
parative branching-time semantics for Markov chains. Information and Compu-
tation, 200(2):149–214, 2005.

[16] Alexander Bell. Distributed evaluation of stochastic Petri nets. PhD thesis,
Rheinisch-Westfalische Technischen Hochschule Aachen, Aachen, Germany, 2004.

[17] S. Bernardi, S. Donatelli, and A. Horváth. Compositionality in the Great-
SPN Tool and Its Application to the Modelling of Industrial Applications. In
K. Jensen, editor, Practical Use of High-level Petri Nets, pages 127–146. Univer-
sity of Aarhus, Department of Computer Science, 2000.

[18] P. Billingsley. Probability and Measure. John Wiley & Sons, New York, NY,
USA, 3d edition, 1995.

[19] Eckard Bode, Marc Herbstritt, Holger Hermanns, Sven Johr, Thomas
Peikenkamp, Reza Pulungan, Ralf Wimmer, and Bernd Becker. Compositional
Performability Evaluation for STATEMATE. In Quantitative Evaluation of Sys-
tems (QEST), pages 167–178. IEEE Computer Society, 2006.

[20] Barry W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, Ray Madachy, and
Bert Steece. Software Cost Estimation with Cocomo II. Prentice Hall PTR, 2000.

[21] A. Bondavalli, A. Coccoli, and F. Di Giandomenico. QoS Analysis of Group
Communication Protocols in Wireless Environment. Kluwer Academic Publishers
Concurrency in Dependable Computing, 2002.

[22] Lawrence D. Brown, T. Tony Cai, and Anirban DasGupta. Interval estimation
for a binomial proportion. Statistical Science, 16(2):101–133, 2001.

i

i

i

i

i

i

i

i

BIBLIOGRAPHY 167

[23] A. Bryant and J. A. Kirkham. B. W. Boehm software engineering economics: a
review essay. SIGSOFT Software Engineering Notes, 8(3):44–60, 1983.

[24] P. Buchholz. Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability, 31:59–75, 1994.

[25] P. Buchholz, M. Fischer, P. Kemper, and C. Tepper. Model checking of CTMCs
and discrete event simulation integrated in the APNN-Toolbox. In F. Bause, edi-
tor, Measurement, Modelling, and Evaluation of Computer-Communication Sys-
tems, volume 781, pages 30–33. Fachbereich Informatik, Universität Dortmund,
2003.

[26] P. Buchholz, J.-P. Katoen, P. Kemper, and C. Tepper. Model-checking large
structured Markov chains. Journal of Logic and Algebraic Programming, 56:69–
96, 2003.

[27] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event
Systems. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

[28] D. Cerotti, D. D’Aprile, S. Donatelli, and J. Sproston. Verifying Stochastic Well-
formed Nets with CSL Model-Checking Tools. In K. Goossens and L. Petrucci,
editors, Application of Concurrency to System Design (ACSD), pages 143–152.
IEEE Computer Society, 2006.

[29] Byron Changuion, Ian Davies, and Micheal
Nelte. DaNAMiCS: a Petri Net Editor.
http://www.cs.uct.ac.za/Research/DNA/microweb/danamics/DNAFrameH.html,
2007.

[30] Y. S. Chow and H. Robbins. On the asymptotic theory of fixed-width sequential
confidence intervals for the mean. Annals of Mathematical Statistics, 36(2):456–
462, 1965.

[31] Frank Ciesinski and Marcus Größer. On Probabilistic Computation Tree Logic. In
Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, Joost-Pieter Katoen,
and Markus Siegle, editors, Validation of Stochastic Systems, volume 2925 of
LNCS, pages 147–188. Springer, 2004.

[32] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. AMC Transactions
On Programming Languages And Systems, 8(2):244–263, 1986.

[33] L. Cloth, J.-P. Katoen, M. Khattri, and R. Pulungan. Model-Checking Markov
Reward Models with Impulse Rewards. In Dependable Systems and Networks
(DSN), pages 722–731. IEEE Computer Society, 2005.

[34] Lucia Cloth. Model Checking Algorithms for Markov Reward Models. PhD thesis,
University of Twente, Enschede, The Netherlands, 2006.

[35] The GNU Compiler Collection. GCC web page. http://gcc.gnu.org/, 2008.

http://www.cs.uct.ac.za/Research/DNA/microweb/danamics/DNAFrameH.html
http://gcc.gnu.org/

i

i

i

i

i

i

i

i

168 BIBLIOGRAPHY

[36] David R. Cox. A use of complex probabilities in the theory of stochastic processes.
In Cambridge Philosophical Society, volume 51, pages 313–319, 1955.

[37] M. A. Crane and D. L. Iglehart. Simulating Stable Stochastic Systems III: Regen-
erative Processes and Discrete-Event Simulations. Operations Research, 23:33–45,
1975.

[38] Davide D’Aprile, Susanna Donatelli, and Jeremy Sproston. CSL Model Check-
ing for the GreatSPN Tool. In Cevdet Aykanat, Tugrul Dayar, and Ibrahim
Korpeoglu, editors, Computer and Information Sciences, volume 3280 of LNCS,
pages 543–553. Springer, 2004.

[39] Pedro R. D’Argenio, Bertrand Jeannet, Henrik Ejersbo Jensen, and Kim Guld-
strand Larsen. Reachability Analysis of Probabilistic Systems by Succes-
sive Refinements. In Luca de Alfaro and Stephen Gilmore, editors, Pro-
cess Algebra and Probabilistic Methods, Performance Modeling and Verification
(PAPM/PROBMIV), volume 2165 of LNCS, pages 39–56. Springer, 2001.

[40] S. Derisavi. Solution of Large Markov Models Using Lumping Techniques
and Symbolic Data Structures. PhD thesis, University of Illinois at Urbana-
Champaign, 2005.

[41] Salem Derisavi, Holger Hermanns, and William H. Sanders. Optimal State-Space
Lumping in Markov Chains. Information Processing Letters, 87(6):309–315, 2003.

[42] R. M. Dudley. Real Analysis and Probability. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, UK, 2002.

[43] Harald Fecher, Martin Leucker, and Verena Wolf. Don’t Know in Probabilistic
Systems. In Antti Valmari, editor, Model Checking of Software (SPIN), volume
3925 of LNCS, pages 71–88. Springer, 2006.

[44] George S. Fishman. Monte Carlo: Concepts, Algorithms and Applications.
Springer, New York, NY, USA, 1996.

[45] K. Fisler and M. Y. Vardi. Bisimulation Minimization in an Automata-Theoretic
Verification Framework. In Ganesh Gopalakrishnan and Phillip J. Windley, ed-
itors, Formal Methods in Computer-Aided Design (FMCAD), volume 1522 of
LNCS, pages 115–132. Springer, 1998.

[46] K. Fisler and M. Y. Vardi. Bisimulation and Model Checking. In Laurence Pierre
and Thomas Kropf, editors, Correct Hardware Design and Verification Methods
(CHARME), volume 1703 of LNCS, pages 338–342. Springer, 1999.

[47] K. Fisler and M. Y. Vardi. Bisimulation Minimization and Symbolic Model
Checking. In Formal Methods in System Design, volume 21, pages 39–78. Kluwer
Academic Publishers, 2002.

[48] W. Fokkink and J. Pang. Simplifying Itai-Rodeh leader election for anonymous
rings. Electronic Notes in Theoretical Computer Science, 128(6):53–68, 2004.

[49] Eclipse Foundation. Eclipse web page. http://www.eclipse.org, 2007.

http://www.eclipse.org

i

i

i

i

i

i

i

i

BIBLIOGRAPHY 169

[50] Bennett L. Fox and Peter W. Glynn. Computing Poisson probabilities. Commu-
nications of the ACM, 31(4):440–445, 1988.

[51] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-Terminal Binary Decision Di-
agrams: An Efficient Data Structure for Matrix Representation. Formal Methods
in System Design, 10(2-3):149–169, 1997.

[52] E. Gafni and M. Mitzenmacher. Analysis of Timing-Based Mutual Exclusion
with Random Times. In Principles of Distributed Computing, pages 13–21, 1999.

[53] Marcus Größer and Christel Baier. Partial Order Reduction for Markov Decision
Processes: A Survey. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem P. de Roever, editors, Formal Methods for Components and
Objects (FMCO), volume 4111 of LNCS, pages 408–427. Springer, 2005.

[54] Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskar. On randomization in sequen-
tial and distributed algorithms. ACM Computing Surveys, 26(1):7–86, 1994.

[55] Tingting Han and Joost-Pieter Katoen. Counterexamples in Probabilistic Model
Checking. In Orna Grumberg and Michael Huth, editors, Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 4424 of LNCS,
pages 72–86. Springer, 2007.

[56] N. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[57] B. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen, and C. Baier. Model Check-
ing Performability Properties. In Dependable Systems and Networks (DSN),
pages 103–112. IEEE Computer Society, 2002.

[58] B. Haverkort, H. Hermanns, and J.-P. Katoen. On the Use of Model Checking
Techniques for Dependability Evaluation. In Symposium on Reliable Distributed
Systems (SRDS), pages 228–237. IEEE Computer Society, 2000.

[59] Boudewijn R. Haverkort. Performance of Computer Communication Systems: A
Model-Based Approach. John Wiley & Sons, Inc., New York, NY, USA, 1998.

[60] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Tool for Model
Checking Markov Chains. Int. J. on Softw. for Technology Transfer (STTT),
4(2):153–172, 2003.

[61] Holger Hermanns, Ulrich Herzog, Ulrich Klehmet, Vassilis Mertsiotakis, and
Markus Siegle. Compositional performance modelling with the TIPPtool. Per-
formance Evaluation, 39(1-4):5–35, 2000.

[62] Holger Hermanns and Sven Johr. Uniformity by Construction in the Analysis
of Nondeterministic Stochastic Systems. In Dependable Systems and Networks
(DSN), pages 718–728. IEEE Computer Society, 2007.

[63] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus
Siegle. A Markov Chain Model Checker. In Susanne Graf and Michael
Schwartzbach, editors, Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS), volume 1785 of LNCS, pages 347–362. Springer, 2000.

i

i

i

i

i

i

i

i

170 BIBLIOGRAPHY

[64] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus
Siegle. Towards Model Checking Stochastic Process Algebra. In Wolfgang
Grieskamp, Thomas Santen, and Bill Stoddart, editors, Integrated Formal Meth-
ods (IFM), volume 1945 of LNCS, pages 420–439. Springer, 2000.

[65] Holger Hermanns, Marta Z. Kwiatkowska, Gethin Norman, David Parker, and
Markus Siegle. On the use of MTBDDs for performability analysis and ver-
ification of stochastic systems. Journal of Logic and Algebraic Programming,
56(1-2):23–67, 2003.

[66] Holger Hermanns, Joachim Meyer-Kayser, and Markus Siegle. Multi Terminal
Binary Decision Diagrams to Represent and Analyse Continuous Time Markov
Chains. In B. Plateau, W. J. Stewart, and M. Silva, editors, Numerical Solutions
of Markov Chains, pages 188–207. Prensas Universitarias, 1999.

[67] Jane Hillston. A Compositional Approach to Performance Modelling. Distin-
guished Dissertations Series. Cambridge University Press, New York, NY, USA,
1996.

[68] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A Tool for
Automatic Verification of Probabilistic Systems. In H. Hermanns and J. Pals-
berg, editors, Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 3920 of LNCS, pages 441–444. Springer, 2006.

[69] Robert V. Hogg and Allen T. Craig. Introduction to Mathematical Statistics.
MacMillan, New York, NY, USA, 4th edition, 1978.

[70] A. Hordijk, D. L. Iglehart, and R. A. Schassberger. Discrete Time Methods for
Simulating Continuous Time Markov Chains. Advances in Applied Probability,
8:772–788, 1976.

[71] Michael Huth. An Abstraction Framework for Mixed Non-deterministic and
Probabilistic Systems. In Christel Baier, Boudewijn R. Haverkort, Holger Her-
manns, Joost-Pieter Katoen, and Markus Siegle, editors, Validation of Stochastic
Systems, volume 2925 of LNCS, pages 419–444. Springer, 2004.

[72] Michael Huth. On finite-state approximants for probabilistic computation tree
logic. Theoretical Computer Science, 346(1):113–134, 2005.

[73] Oliver C. Ibe and Kishor S. Trivedi. Stochastic Petri Net Models of Polling
Systems. Selected Areas in Communications, 8(9):1649–1657, 1990.

[74] Free Software Foundation Inc. Yacc and Lex web page.
http://dinosaur.compilertools.net/, 2008.

[75] Scientific Toolworks Inc. Understand C/C++. http://www.scitools.com/, 2008.

[76] Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks. In-
formation and Computation, 88(1):60–87, 1990.

[77] Lloyd R. Jaisingh. Statistics for the Utterly Confused. McGraw-Hill, New York,
NY, USA, second edition, 2005.

http://dinosaur.compilertools.net/
http://www.scitools.com/

i

i

i

i

i

i

i

i

BIBLIOGRAPHY 171

[78] David N. Jansen, Joost-Pieter Katoen, Marcel Oldenkamp, Mariëlle Stoelinga,
and Ivan S. Zapreev. How Fast and Fat Is Your Probabilistic Model Checker?
In Haifa Verification Conference (HVC), volume 4899 of LNCS, pages 65 – 79.
Springer, 2008.

[79] Sven Johr. Model Checking Compositional Markov Systems. PhD thesis, Univer-
sität des Saarlandes, Saarbrücken, Germany, 2007.

[80] Samuel Karlin and James L. McGregor. The differential equations of birth-and-
death processes, and the Stieltjes moment problem. Transactions of the American
Mathematical Society, 85(2):489–546, 1957.

[81] J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and Symbolic
CTMC Model Checking. In Luca de Alfaro and Stephen Gilmore, editors, Pro-
cess Algebra and Probabilistic Methods, Performance Modeling and Verification
(PAPM/PROBMIV), volume 2165 of LNCS, pages 23–38. Springer, 2001.

[82] J.-P. Katoen and Ivan S. Zapreev. Safe On-The-Fly Steady-State Detection for
Time-Bounded Reachability. Technical Report TR-CTIT-05-52, CTIT, Univer-
sity of Twente, 2005.

[83] Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreev, and David N. Jansen. Bisim-
ulation Minimisation Mostly Speeds Up Probabilistic Model Checking. In Orna
Grumberg and Michael Huth, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), volume 4424 of LNCS, pages 87–101.
Springer, 2007.

[84] Joost-Pieter Katoen, Maneesh Khattri, and Ivan S. Zapreev. A Markov Reward
Model Checker. In Quantitative Evaluation of Systems (QEST), pages 243–244.
IEEE Computer Society, 2005.

[85] Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf. Three-
Valued Abstraction for Continuous-Time Markov Chains. In Werner Damm and
Holger Hermanns, editors, Computer Aided Verification (CAV), volume 4590 of
LNCS, pages 311–324. Springer, 2007.

[86] Joost-Pieter Katoen and Ivan S. Zapreev. Safe On-The-Fly Steady-State De-
tection for Time-Bounded Reachability. In Quantitative Evaluation of Systems
(QEST), pages 301–310. IEEE Computer Society, 2006.

[87] M. Kwiatkowska. Model Checking for Probability and Time: From Theory to
Practice. In Logic in Computer Science (LICS), pages 351–360. IEEE Computer
Society, 2003.

[88] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Symbolic
Model Checker. In T. Field, P. Harrison, J. Bradley, and U. Harder, editors, Mod-
elling Techniques and Tools for Computer Performance Evaluation (TOOLS),
volume 2324 of LNCS, pages 200–204. Springer, 2002.

[89] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic Symbolic Model
Checking with PRISM: A Hybrid Approach. International Journal on Software
Tools for Technology Transfer (STTT), 6(2):128–142, 2004.

i

i

i

i

i

i

i

i

172 BIBLIOGRAPHY

[90] M. Kwiatkowska, G. Norman, and D. Parker. Symmetry Reduction for Prob-
abilistic Model Checking. In T. Ball and R. Jones, editors, Computer Aided
Verification (CAV), volume 4114 of LNCS, pages 234–248. Springer, 2006.

[91] M. Kwiatkowska, D. Parker, Y. Zhang, and R. Mehmood. Dual-Processor Paral-
lelisation of Symbolic Probabilistic Model Checking. In D. DeGroot and P. Har-
rison, editors, Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), pages 123–130. IEEE Computer Society, 2004.

[92] Marta Kwiatkowska, Gethin Norman, and David Parker. Game-based Abstrac-
tion for Markov Decision Processes. In Quantitative Evaluation of Systems
(QEST), pages 157–166. IEEE Computer Society, 2006.

[93] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. In-
formation and Computation, 94(1):1–28, 1991.

[94] Richard Lassaigne and Sylvain Peyronnet. Approximate verification of prob-
abilistic systems. In Holger Hermanns and Roberto Segala, editors, Pro-
cess Algebra and Probabilistic Methods, Performance Modeling and Verification
(PAPM/PROBMIV), pages 213–214. Springer, 2002.

[95] P. Lecca and C. Priami. Cell cycle control in eukaryotes: A BioSpi model.
Technical Report DIT-03-045, Informatica e Telecommunicazioni: University of
Trento, 2003.

[96] Tim Littlefair. CCCC web page. http://cccc.sourceforge.net/, 2008.

[97] Manish Malhotra, Jogesh K. Muppala, and Kishor S. Trivedi. Stiffness-tolerant
methods for transient analysis of stiff Markov chains. Microelectronics and Reli-
ability, 34(11):1825–1841, 1994.

[98] Mouad Ben Mamoun, Nihal Pekergin, and Sana Younes. Model Checking of
Continuous-Time Markov Chains by Closed-Form Bounding Distributions. In
Quantitative Evaluation of Systems (QEST), pages 189–198. IEEE Computer
Society, 2006.

[99] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.
GreatSPN web page. http://www.di.unito.it/∼greatspn/index.html, 2008.

[100] Mieke Massink, Joost-Pieter Katoen, and Diego Latella. Model Checking De-
pendability Attributes of Wireless Group Communication. In Dependable Sys-
tems and Networks (DSN), pages 711–720. IEEE Computer Society, 2004.

[101] I. Mitrani. Simulation Techniques for Discrete Event Systems. Cambridge Uni-
versity Press, New York, NY, USA, 1982.

[102] Michael Mock, Edgar Nett, and Stefan Schemmer. Efficient Reliable Real-Time
Group Communication for Wireless Local Area Networks. In Jan Hlavicka, Erik
Maehle, and Andrs Pataricza, editors, European Dependable Computing Confer-
ence, volume 1667 of LNCS, pages 380–400. Springer, 1999.

http://cccc.sourceforge.net/
http://www.di.unito.it/~greatspn/index.html

i

i

i

i

i

i

i

i

BIBLIOGRAPHY 173

[103] Sri Gopal Mohanty, Aliakbar Montazer-Haghighi, and R. Trueblood. On the
transient behavior of a finite birth-death process with an application. Computers
and Operations Research, 20(3):239–248, 1993.

[104] David Monniaux. Abstract interpretation of programs as Markov decision pro-
cesses. Science of Computer Programming, 58(1-2):179–205, 2005.

[105] MRMC: downloads. http://www.cs.utwente.nl/∼zapreevis/mrmc/downloads.php,
2008.

[106] MRMC: Specifications. http://www.cs.utwente.nl/∼zapreevis/mrmc/spec.html,
2008.

[107] Prism: exporting models. http://www.prismmodelchecker.org/manual
/RunningPRISM/ExportingTheModel, 2008.

[108] Arthur Nadas. An extension of a theorem of Chow and Robbins on sequential
confidence intervals for the mean. Annals of Mathematical Statistics, 40(2):667–
671, 1969.

[109] G. Norman and V. Shmatikov. Analysis of probabilistic contract signing. Journal
of Computer Security, 14(6):561–589, 2006.

[110] H.A. Oldenkamp. Probabilistic model checking: A comparison of tools. Master’s
thesis, University of Twente, Faculty EEMCS, Computer Science Department,
Formal Methods and Tools Group, Enschede, Netherlands, 2007.

[111] D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham, Birmingham, UK, 2002.

[112] Sergio Pissanetzky. Sparse Matrix Technology. Academic Press, London, UK,
1984.

[113] A. Pnueli and L. Zuck. Verification of Multiprocess Probabilistic Protocols. Dis-
tributed Computing, 1(1):53–72, 1986.

[114] Amir Pnueli. The Temporal Semantics of Concurrent Programs. In Semantics
of Concurrent Computation, pages 1–20. Springer, 1979.

[115] Prism: case studies. http://www.prismmodelchecker.org/casestudies/, 2008.

[116] Prism: Workstation Cluster Example. http://www.prismmodelchecker.org
/casestudies/cluster.php, 2008.

[117] GNU Project and the Free Software Foundation. GNU General Public License
(GPL). http://www.gnu.org/copyleft/gpl.html, 2007.

[118] M. A. Qureshi and W. H. Sanders. A New Methodology for Calculating Dis-
tributions of Reward Accumulated During a Finite Interval. In Fault-Tolerant
Computing, pages 116–125. IEEE Computer Society, 1996.

[119] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web Transactions. In
ACM Transactions on Information and System Security, volume 1, pages 66–92.
ACM Press, 1998.

http://www.cs.utwente.nl/~zapreevis/mrmc/downloads.php
http://www.cs.utwente.nl/~zapreevis/mrmc/spec.html
http://www.prismmodelchecker.org/manual
/RunningPRISM/ExportingTheModel
http://www.prismmodelchecker.org/casestudies/
http://www.prismmodelchecker.org
/casestudies/cluster.php
http://www.gnu.org/copyleft/gpl.html

i

i

i

i

i

i

i

i

174 BIBLIOGRAPHY

[120] W. H. Sanders, W. D. Obal, M. A. Qureshi, and F. K. Widjanarko. The UltraSAN
modeling environment. Performance Evaluation, 24(1-2):89–115, 1995.

[121] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical Model Checking
of Black-Box Probabilistic Systems. In Rajeev Alur and Doron A. Peled, edi-
tors, Computer Aided Verification (CAV), volume 3114 of LNCS, pages 202–215.
Springer, 2004.

[122] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On Statistical Model Check-
ing of Stochastic Systems. In Kousha Etessami and Sriram K. Rajamani, edi-
tors, Computer Aided Verification (CAV), volume 3576 of LNCS, pages 266–280.
Springer, 2005.

[123] Koushik Sen, Mahesh Viswanathan, and Gul Agha. VESTA: A Statistical Model-
checker and Analyzer for Probabilistic Systems. In Quantitative Evaluation of
Systems (QEST), page 251. IEEE Computer Society, 2005.

[124] Gerald S. Shedler. Regenerative Stochastic Simulation. Academic Press, London,
UK, 1993.

[125] Daniel Sleator. Splay-tree implementation. http://www.link.cs.cmu.edu/splay/,
2006.

[126] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. Journal of the ACM, 32(3):652–686, 1985.

[127] Fabio Somenzi. CUDD: CU Decision Diagram package.
http://vlsi.colorado.edu/∼fabio/CUDD/, 1997. Public software.

[128] Murray Ralph Spiegel, John J. Schiller, and R. Alu Srinivasan. Schaum’s Outline
of Theory and Problems of Probability and Statistics. McGraw-Hill, New York,
NY, USA, 2000.

[129] Jeremy Sproston and Susanna Donatelli. Backward Bisimulation in Markov
Chain Model Checking. IEEE Transactions on Software Engineering, 32(8):531–
546, 2006.

[130] William J. Stewart. A Comparison of Numerical Techniques in Markov Modeling.
Communications of the ACM, 21(2):144–152, 1978.

[131] William J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, Princeton, NJ, USA, 1994.

[132] Robert E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM
Journal of Computing, 1(2):146–160, 1972.

[133] H. C. Tijms and R. Veldman. A fast algorithm for the transient reward dis-
tribution in continuous-time Markov chains. In Operations Research Letters,
volume 26, pages 155–158, 2000.

[134] Henk C. Tijms. A First Course in Stochastic Models. John Wiley & Sons, 2003.

http://www.link.cs.cmu.edu/splay/
http://vlsi.colorado.edu/~fabio/CUDD/

i

i

i

i

i

i

i

i

BIBLIOGRAPHY 175

[135] Mirco Tribastone and Stephen Gilmore. A New Generation PEPA Workbench. In
Process Algebra and Stochastically Timed Activities (PASTA), pages 1820–1845,
2006.

[136] Jerzy Tyszer. Object-Oriented Computer Simulation of Discrete-Event Systems.
Kluwer Academic Publishers, Norwell, MA, USA, 1999.

[137] David A. Wheeler. SLOCCount web page.
http://www.dwheeler.com/sloccount/, 2008.

[138] Ward Whitt. Continuity of generalized semi-Markov processes. Mathematics of
Operations Research, 5:494–501, 1980.

[139] H. Younes. Black-box probabilistic verification. Technical Report CMU-CS-04-
162, Carnegie Mellon University, 2004.

[140] H. Younes. Verification and Planning for Stochastic Processes with Asynchronous
Events. PhD thesis, Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA, USA, 2005.

[141] H. Younes. Ymer: A Statistical Model Checker. In Kousha Etessami and Sri-
ram K. Rajamani, editors, Computer Aided Verification (CAV), volume 3576 of
LNCS, pages 429–433. Springer, 2005.

[142] H. Younes. Error Control for Probabilistic Model Checking. In E. Allen Emer-
son and Kedar S. Namjoshi, editors, Verification, Model Checking, and Abstract
Interpretation (VMCAI), volume 3855 of LNCS, pages 142–156. Springer, 2006.

[143] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs. Sta-
tistical Probabilistic Model Checking: An Empirical Study. In K. Jensen and
A. Podelski, editors, Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 2988 of LNCS, pages 46–60. Springer, 2004.

[144] H. Younes and R. Simmons. Statistical Probabilistic Model Checking with a
Focus on Time-Bounded Properties. Information and Computation, 204(9):1368–
1409, 2006.

[145] H̊akan Younes, Marta Kwiatkowska, Gethin Norman, and David Parker. Numer-
ical vs. Statistical Probabilistic Model Checking. Software Tools for Technology
Transfer (STTT), 8(3):216–228, 2006.

[146] H̊akan Younes and Reid Simmons. Probabilistic Verification of Discrete Event
Systems using Acceptance Sampling. In Ed Brinksma and Kim Guldstrand
Larsen, editors, Computer Aided Verification (CAV), volume 2404 of LNCS,
pages 223–235. Springer, 2002.

http://www.dwheeler.com/sloccount/

i

i

i

i

i

i

i

i

176 BIBLIOGRAPHY

i

i

i

i

i

i

i

i

Titles in the IPA Dissertation
Series since 2002

M.C. van Wezel. Neural Networks for
Intelligent Data Analysis: theoretical and
experimental aspects. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal
Specification and Analysis of Industrial
Systems. Faculty of Mathematics and
Computer Science and Faculty of Me-
chanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Under-
standing Legacy Software Systems. Fac-
ulty of Natural Sciences, Mathematics
and Computer Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in
Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable Con-
struction: Algorithms and Complexity.
Faculty of Mathematics and Computer
Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Ver-
ification of Probabilistic, Real-time and
Parametric Systems. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, KUN. 2002-06

N. van Vugt. Models of Molecular
Computing. Faculty of Mathematics and
Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in Model

Checking of Timed and Hybrid Systems.
Faculty of Science, Mathematics and
Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and
Bin Packing. Faculty of Mathematics
and Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Fil-
tering: Concepts and Algorithms. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2002-10

M.B. van der Zwaag. Models and Log-
ics for Process Algebra. Faculty of Nat-
ural Sciences, Mathematics, and Com-
puter Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Exten-
sions of Semantical Models. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Sys-
tems. Faculty of Natural Sciences, Math-
ematics, and Computer Science, UvA.
2002-13

J.I. van Hemert. Applying Evolution-
ary Computation to Constraint Satisfac-
tion and Data Mining. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2002-15

177

i

i

i

i

i

i

i

i

178 BIBLIOGRAPHY

Y.S. Usenko. Linearization in µCRL.
Faculty of Mathematics and Computer
Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Stor-
age for Video on Demand. Faculty
of Mathematics and Computer Science,
TU/e. 2003-01

M. de Jonge. To Reuse or To
Be Reused: Techniques for component
composition and construction. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal over
Typed Source Code Representations. Fac-
ulty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Ver-
ification in Process Algebras with Data
and Timing. Faculty of Mathematics and
Computer Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations
of Catalytic Reactions. Faculty of Math-
ematics and Computer Science, TU/e.
2003-06

M.E.M. Lijding. Real-time Scheduling
of Tertiary Storage. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process
Annotation – CoMPAs. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2003-08

D. Distefano. On Modelchecking the
Dynamics of Object-based Software: a
Foundational Approach. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2003-09

M.H. ter Beek. Team Automata – A
Formal Approach to the Modeling of Col-
laboration Between System Components.

Faculty of Mathematics and Natural Sci-
ences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Func-
tional Approach to Software Components.
Faculty of Mathematics and Computer
Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ra-
tios for the Differencing Method. Faculty
of Mathematics and Computer Science,
TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive The-
orem Proving. Faculty of Mathematics
and Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Com-
puting – Splicing and Membrane systems.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home Environments. Fac-
ulty of Mathematics and Computer Sci-
ence and Faculty of Industrial Design,
TU/e. 2004-05

F. Bartels. On Generalised Coinduction
and Probabilistic Specification Formats.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2004-06

L. Cruz-Filipe. Constructive Real
Analysis: a Type-Theoretical Formaliza-
tion and Applications. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, KUN. 2004-07

E.H. Gerding. Autonomous Agents in
Bargaining Games: An Evolutionary In-
vestigation of Fundamentals, Strategies,
and Business Applications. Faculty of
Technology Management, TU/e. 2004-08

i

i

i

i

i

i

i

i

BIBLIOGRAPHY 179

N. Goga. Control and Selection Tech-
niques for the Automated Testing of Re-
active Systems. Faculty of Mathematics
and Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arith-
metic: Representations, Algorithms and
Proofs. Faculty of Science, Mathematics
and Computer Science, RU. 2004-10

A. Löh. Exploring Generic Haskell.
Faculty of Mathematics and Computer
Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning
Algorithms for Car Navigation. Faculty
of Mathematics and Computer Science,
TU/e. 2004-12

R.J. Bril. Real-time Scheduling for
Media Processing Using Conditionally
Guaranteed Budgets. Faculty of Math-
ematics and Computer Science, TU/e.
2004-13

J. Pang. Formal Verification of Dis-
tributed Systems. Faculty of Sciences, Di-
vision of Mathematics and Computer Sci-
ence, VUA. 2004-14

F. Alkemade. Evolutionary Agent-
Based Economics. Faculty of Technology
Management, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position
Estimation Using a Single Base Station.
Faculty of Mathematics and Computer
Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verifica-
tion and Verified Distribution. Faculty
of Sciences, Division of Mathematics and
Computer Science, VUA. 2004-17

M.M. Schrage. Proxima - A
Presentation-oriented Editor for Struc-
tured Documents. Faculty of Mathemat-
ics and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quan-
titative Prediction of Quality Attributes

for Component-Based Software Architec-
tures. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Su-
pervisory Machine Control by Predictive-
Reactive Scheduling. Faculty of Mechan-
ical Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof
System for Multithreaded Java -Theory
and Tool Support- . Faculty of Mathe-
matics and Natural Sciences, UL. 2005-
01

R. Ruimerman. Modeling and Remod-
eling in Bone Tissue. Faculty of Biomed-
ical Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights
Control - Expression and Enforcement.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty
of Mathematics and Computing Sciences,
RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita. Scenario-Based System
Architecting - A Systematic Approach to
Developing Future-Proof System Archi-
tectures. Faculty of Mathematics and
Computing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-
formations. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-08

i

i

i

i

i

i

i

i

180 BIBLIOGRAPHY

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network
Reliability. Faculty of Science, UU. 2005-
09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engineer-
ing, TU/e. 2005-11

J. Eggermont. Data Mining using Ge-
netic Programming: Classification and
Symbolic Regression. Faculty of Math-
ematics and Natural Sciences, UL. 2005-
12

B.J. Heeren. Top Quality Type Error
Messages. Faculty of Science, UU. 2005-
13

G.F. Frehse. Compositional Verifica-
tion of Hybrid Systems using Simulation
Relations. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Structural
Operational Semantics. Faculty of Math-
ematics and Computer Science, TU/e.
2005-15

A. Sokolova. Coalgebraic Analysis of
Probabilistic Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing and
Rewriting. Faculty of Natural Sciences,

Mathematics, and Computer Science,
UvA. 2005-19

M.Valero Espada. Modal Abstraction
and Replication of Processes with Data.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor net-
works: energy-efficient attack and de-
fense. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Secu-
rity Protocols. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Faculty
of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of Hy-
brid Systems. Faculty of Mathematics
and Computer Science and Faculty of
Mechanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality. Faculty of Mathematics
and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applications.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences, VUA.
2006-07

i

i

i

i

i

i

i

i

BIBLIOGRAPHY 181

C.-B. Breunesse. On JML: topics
in tool-assisted verification of JML pro-
grams. Faculty of Science, Mathematics
and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molec-
ular Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and Nat-
ural Sciences, UL. 2006-10

G. Russello. Separation and Adaptation
of Concerns in a Shared Data Space. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-11

L. Cheung. Reconciling Nondetermin-
istic and Probabilistic Choices. Faculty
of Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Faculty
of Mathematics and Computer Science,
TU/e. 2006-14

T. Krilavičius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-18

L.C.M. van Gool. Formalising Inter-
face Specifications. Faculty of Mathemat-
ics and Computer Science, TU/e. 2006-
19

C.J.F. Cremers. Scyther - Seman-
tics and Verification of Security Proto-
cols. Faculty of Mathematics and Com-
puter Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Implemen-
tation and Composition. Faculty of
Mathematics and Natural Sciences, UL.
2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous Dis-
tributed Systems. Faculty of Mathemat-
ics and Computing Sciences, RUG. 2007-
03

T.D. Vu. Semantics and Applications
of Process and Program Algebra. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and Cov-
erage. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Mathe-
matics and Computer Science, RU. 2007-
06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty

i

i

i

i

i

i

i

i

182 BIBLIOGRAPHY

of Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics and
Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Processes.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineering,
TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series of
Empirical Studies about the UML. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery.
Faculty of Natural Sciences, Mathemat-
ics, and Computer Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Faculty
of Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Un-
derstanding the Electronic Voting Con-
troversy. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science, RU.
2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of High-
tech Multi-disciplinary Systems. Faculty
of Mechanical Engineering, TU/e. 2008-
05

M. Bravenboer. Exercises in Free Syn-
tax: Syntax Definition, Parsing, and As-
similation of Language Conglomerates.
Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification of
Optimistic Fair Exchange Protocols. Fac-
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

i

i

i

i

i

i

i

i

BIBLIOGRAPHY 183

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science, Mathe-
matics and Computer Science, RU. 2008-
09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty

of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2008-11

i

i

i

i

i

i

i

i

184 BIBLIOGRAPHY

i

i

i

i

i

i

i

i

Part IV

Appendices

185

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

Appendix A

Markov Reward Model
Checker

A.1 Profiling MRMC with gprof

In this section we present performance-profiling results for MRMC obtained with gprof.
To interpret the profile-table data one has to consider the following column notation:

• % time – The percentage of the total execution time the program spent in a
function.

• cumulative seconds – The total number of seconds the computer spent executing
the function, plus the time spent in functions located in the higher rows of the
table.

• self seconds – The total number of seconds spent in this function alone. The
profile listing is sorted by this number.

• calls – The total number of times the function was called.

• self s/call - The average number of seconds spent in the function per call

• total s/call – The average number of seconds spent in the function and its de-
scendants per call

• name – The name of the function.

It is also important to note that everywhere below gprof was using 100 Hz sampling
rate, i.e. the sampling was done every 0.01 second.

Model checking S<0.2 (busy1 ∧ ¬serve1):

% cumulative self self total

time seconds seconds calls s/call s/call name

31.42 43.88 43.88 73531370 0.00 0.00 multiplyUrowByConstAndAddToLUx

9.34 56.92 13.04 70713344 0.00 0.00 get_bit_val

7.92 67.98 11.06 31195136 0.00 0.00 set_mtx_val_ncolse

6.25 76.71 8.73 96927744 0.00 0.00 getRoot

187

i

i

i

i

i

i

i

i

188 APPENDIX A. MARKOV REWARD MODEL CHECKER

Model checking busy1 =⇒ P≥1.0 (♦poll 1):

% cumulative self self total

time seconds seconds calls s/call s/call name

25.53 13.54 13.54 109051904 0.00 0.00 get_bit_val

19.70 23.99 10.45 31195136 0.00 0.00 set_mtx_val_ncolse

9.62 29.09 5.10 1 5.10 13.61 get_exist_until

8.21 33.45 4.36 53677099 0.00 0.00 isWithinLineDelimiter

7.47 37.41 3.96 39783435 0.00 0.00 isEndOfLineSymbol

4.17 39.62 2.21 1 2.21 16.10 read_tra_file

3.59 41.52 1.91 31195136 0.00 0.00 set_val_ncolse

3.13 43.18 1.66 3342336 0.00 0.00 scan_number

2.51 44.51 1.33 1 1.33 5.89 get_always_until

Model checking busy1 =⇒ P≥0.5

(
♦[0,80]poll1

)
:

% cumulative self self total

time seconds seconds calls s/call s/call name

97.37 10064.90 10064.90 16979 0.00 0.00 multiply_mtx_cer_MV

2.16 10288.28 223.38 1 0.22 10.29 uniformization_plain

0.10 10298.81 10.53 31195136 0.00 0.00 set_mtx_val_ncolse

0.09 10308.47 9.66 75759616 0.00 0.00 get_bit_val

0.05 10313.29 4.82 1 0.00 0.01 get_exist_until

Model checking P≥0.99

(
♦[40,80]serve1

)
:

% cumulative self self total

time seconds seconds calls s/call s/call name

95.23 7696.30 7696.30 17352 0.00 0.00 multiply_mtx_cer_MV

4.09 8027.15 330.86 2 0.17 4.02 uniformization_plain

0.14 8038.31 11.16 31195136 0.00 0.00 set_mtx_val_ncolse

0.13 8048.79 10.48 85786624 0.00 0.00 get_bit_val

0.06 8053.68 4.89 1 0.00 0.01 get_exist_until

A.2 Test coverage of MRMC

The Table A.1 shows the coverage of the MRMC sources in % of tested lines as reported
by gcov. In this table T. lines is the total number of code lines and C. lines is the num-
ber of code lines covered by tests. Also note that lex.yy.c and y.tab.c files are generated
from the io/parser/la etmcc2.l and io/parser/parser etmcc2.y files correspondingly.

i

i

i

i

i

i

i

i

A.2. TEST COVERAGE OF MRMC 189

MRMC component Source files T. lines C. lines Coverage %

Command-prompt
lex.yy.c 286 105 36.71%
y.tab.c 153 108 71.24%

interpreter io/parser/parser to core.c 215 186 86.51%

654 400 61.16%

Input-file reader

io/read impulse rewards.c 33 29 87.88%
io/read lab file.c 34 32 94.12%
io/read rewards.c 10 10 100.00%
io/read tra file.c 59 35 59.32%
io/token.c 39 36 92.31%

175 142 81.14%

Options analyzer mcc.c 233 169 72.53%

Runtime Settings runtime.c 223 196 87.89%

PCTL model checking modelchecking/transient dtmc.c 123 123 100.00%

PRCTL model checking
modelchecking/prctl.c 95 89 93.68%
modelchecking/transient dtmrm.c 91 91 100.00%

186 180 96.77%

CSL model checking modelchecking/transient ctmc.c 345 326 94.49%

CSRL model checking modelchecking/transient ctmrm.c 391 353 90.28%

Common model checking

algorithms/bscc.c 153 148 96.73%
modelchecking/steady.c 149 149 100.00%
modelchecking/transient.c 77 45 58.44%
modelchecking/transient common.c 100 97 97.00%

479 439 91.65 %

Internal Data Storage

storage/bitset.c 156 139 89.10%
storage/kjstorage.c 53 53 100.00%
storage/label.c 57 51 89.47%
storage/path graph.c 61 61 100.00%
storage/sparse.c 479 366 76.41%

806 670 83.13%

Bisimulation engine

lumping/lump.c 358 324 90.50%
lumping/partition.c 122 104 85.25%
lumping/splay.c 78 76 97.44%

558 504 90.32%

Numerical engines
algorithms/foxglynn.c 91 83 91.21%
algorithms/iterative solvers.c 271 200 73.80%

362 283 78.18%

Total coverage 4535 3785 83.46%

Table A.1: The test-suite coverage of MRMC sources

i

i

i

i

i

i

i

i

190 APPENDIX A. MARKOV REWARD MODEL CHECKER

i

i

i

i

i

i

i

i

Appendix B

On-The-Fly Steady-State
Detection

This section contains proofs of Chapter 3.

B.1 Fox-Glynn error bound revisited

This appendix contains proofs of Section 3.2.

Proposition 35 For real-valued function f that does not change sign, and a Poisson
density function γi(t), if

∑Rǫ

i=Lǫ
γi(t) ≥ 1 − ε

2 then the following holds:

∣∣∣∣∣

∞∑

i=0

γi(t)f(i) − 1

W

Rǫ∑

i=Lǫ

wi(t)f(i)

∣∣∣∣∣ ≤
ε

2
· ‖f‖ .

Proof Initially we have:

Rǫ∑

i=Lǫ

γi(t) ≥ 1 − ε

2
(B.1)

∀i ∈ N : γi(t) > 0 (B.2)

∞∑

i=0

γi(t) = 1 (B.3)

‖f‖ = sup
i∈N

|f(i)| (B.4)

Let β =
∑Rǫ

i=Lǫ
γi(t). We obtain from (B.3):

1 − β =

Lǫ−1∑

i=0

γi(t) +

∞∑

i=Rǫ+1

γi(t) (B.5)

Using (B.1), (B.3), and (B.2) it follows 1 − ε
2 ≤ β ≤ 1, or equivalently:

− ε

2
≤ β − 1 ≤ 0 (B.6) 0 ≤ 1 − β ≤ ε

2
(B.7)

191

i

i

i

i

i

i

i

i

192 APPENDIX B. ON-THE-FLY STEADY-STATE DETECTION

Notice that:

∞∑

i=0

γi(t)f(i) − 1

W

Rǫ∑

i=Lǫ

wi(t)f(i) =

Lǫ−1∑

i=0

γi(t)f(i) +

∞∑

i=Rǫ+1

γi(t)f(i)

︸ ︷︷ ︸
=A

+

Rǫ∑

i=Lǫ

(
γi(t) −

wi(t)

W

)
f(i)

︸ ︷︷ ︸
=B

Distinguish two cases:

1. If ∀i ∈ N : 0 ≤ f(i) ≤ ‖f‖, i.e. f is non-negative: Then one can easily obtain:

0 ≤ A ≤ ε

2
· ‖f‖, and − ε

2
· ‖f‖ ≤ B ≤ 0, (B.8)

where the former inequality comes from (B.5), and (B.7). The latter inequality
follows from (B.6) and the definition of β, to be more precise:

B =

Rǫ∑

i=Lǫ

(
γi(t) −

αγi(t)∑Rǫ

j=Lǫ
αγj(t)

)
f(i) =

Rǫ∑

i=Lǫ

γi(t)

(
1 − 1

∑Rǫ

j=Lǫ
γj(t)

)
f(i) =

β − 1

β

Rǫ∑

i=Lǫ

γi(t)f(i), and

−ε

2
· ‖f‖ = −ε

2
· ‖f‖ · 1

β

Rǫ∑

i=Lǫ

γi(t) ≤
β − 1

β

Rǫ∑

i=Lǫ

γi(t)f(i) ≤ 0

Here it is crucial that β − 1 < 0 due to (B.6) and 1
β

∑Rǫ

i=Lǫ
γi(t)f(i) ≥ 0 because

of (B.1), (B.2).

2. If ∀i ∈ N : −‖f‖ ≤ f(i) ≤ 0, i.e. f is non-positive: Then symmetrically, one
can easily obtain:

− ε

2
· ‖f‖ ≤ A ≤ 0, and 0 ≤ B ≤ ε

2
· ‖f‖, (B.9)

where the former inequality comes from (B.5) and (B.7). The latter inequality
follows from (B.6) and the definition of β.

Finally, summing up inequalities in (B.8), or in (B.9) we obtain:

−ε

2
· ‖f‖ ≤

∞∑

i=0

γi(t)f(i) − 1

W

Rǫ∑

i=Lǫ

wi(t)f(i) ≤ ε

2
· ‖f‖

�

B.2 Criteria for steady-state detection

This appendix contains proofs of Section 3.3.

i

i

i

i

i

i

i

i

B.2. CRITERIA FOR STEADY-STATE DETECTION 193

B.2.1 Transient analysis

Let po,∗
j be the j’th component of the precise steady-state solution

−−→
po,∗, considering

forward computations, for the initial distribution
−→
po. Let πo,∗

j (t) be the j’th component

of the vector
−−−−→
πo,∗ (t).

Theorem 36 Let (S, P, L) be an aperiodic DTMC with initial distribution
−→
po, steady-

state distribution
−−→
po,∗ and Ind ⊆ S. If for some K and δ > 0 it holds that ∀i ≥ K :∥∥∥−−→po,∗ − −−−→

po (i)
∥∥∥
∞

v
≤ δ then for

−−−−→
πo,∗ (t) =

∞∑

i=0

γi(t)
−−−→
po (i)

and for inaccuracy ε > 0:

−−−→
πo (t) =

−−−−→
po (K) , if K < Lǫ

1
W

∑K
i=Lǫ

wi(t)
−−−→
po (i) +

−−−−→
po (K)

(
1 − 1

W

∑K
i=Lǫ

wi(t)
)

, if Lǫ ≤ K ≤ Rǫ

1
W

∑Rǫ

i=Lǫ
wi(t)

−−−→
po (i) , if K > Rǫ

the following inequality holds:

∣∣∣∣∣∣

∑

j∈Ind

(
πo,∗

j (t) − πo
j (t)

)
∣∣∣∣∣∣
≤ 2δ|Ind| + 3

4
ε

Here W , wi(t), Lǫ, and Rǫ are computed using the Fox-Glynn algorithm, such that∑Lǫ−1
i=0 γi(t) ≤ ε

4 , and
∑∞

i=Rǫ+1 γi(t) ≤ ε
4 , and |Ind| is the cardinality of Ind.

Proof Since P is aperiodic, the steady-state distribution
−−→
po,∗ exists. Due to the Fox-

Glynn algorithm used with the refined error bound ε
2 (cf. Proposition 4), we have

wi(t) = αγi(t), γi(t) = e−q·t (q·t)i

i! , W =
∑Rǫ

i=Lǫ
wi(t), α 6= 0 is some constant, and Lǫ,

Rǫ such that β =
∑Rǫ

i=Lǫ
γi(t) ≥ 1 − ε

2 . Consider now the three cases as distinguished

for
−−−→
πo (t):

1. (K > Rǫ): The steady-state detection is not involved. Thus the error bound of
the original Fox-Glynn method is applicable.

πo,∗
j (t) − πo

j (t) =

∞∑

i=0

γi(t)p
o
j (i) −

Rǫ∑

i=Lǫ

γi(t)

β
po

j (i)

Like in the proof of Proposition 4 we get:

πo,∗
j (t) − πo

j (t) =

Rǫ∑

i=Lǫ

β − 1

β
γi(t)p

o
j (i)

︸ ︷︷ ︸
=Aj

+

Lǫ−1∑

i=0

γi(t)p
o
j (i) +

∞∑

i=Rǫ+1

γi(t)p
o
j (i)

︸ ︷︷ ︸
=Bj

i

i

i

i

i

i

i

i

194 APPENDIX B. ON-THE-FLY STEADY-STATE DETECTION

As the vector
−−−→
po (i) is a distribution, we have 0 ≤∑j∈Ind po

j (i) ≤ 1. Thus, using

the initial conditions for
∑Lǫ−1

i=0 γi(t),
∑∞

i=Rǫ+1 γi(t) and β it easily follows that:

−ε

2
≤
∑

j∈Ind

Aj ≤ 0 and 0 ≤
∑

j∈Ind

Bj ≤ ε

2

Gathering the results yields:
∣∣∣∣∣∣

∑

j∈Ind

(
πo,∗

j (t) − πo
j (t)

)
∣∣∣∣∣∣
≤ ε

2

2. (Lǫ ≤ K ≤ Rǫ): In this case it follows by definition:

πo
j (t) =

1

W

K∑

i=Lǫ

wi(t)p
o
j (i) + po

j (K)

(
1 − 1

W

K∑

i=Lǫ

wi(t)

)
, and

πo,∗
j (t) − πo

j (t) =

∞∑

i=0

γi(t)p
o
j (i) −

K∑

i=Lǫ

γi(t)

β
po

j (i) − po
j (K)

(
1 −

K∑

i=Lǫ

γi(t)

β

)

The right-hand side of this equation can be rewritten after some standard calcula-
tions into Cj+Dj+Ej , where Cj =

∑Lǫ−1
i=0 γi(t)p

o
j (i) , Dj =

∑K
i=Lǫ

β−1
β γi(t)p

o
j (i)

and Ej =
∑∞

i=K+1 γi(t)p
o
j (i) − po

j (K)
(
1 −∑K

i=Lǫ

γi(t)
β

)
.

As vector
−−−→
po (i) is a distribution, and by assumption

∑Lǫ

i=0 γi(t) ≤ ε
4 :

0 ≤
∑

j∈Ind

Cj ≤ ε

4

From 1 − ε
2 ≤ β ≤ 1 and 0 ≤∑j∈Ind po

j (i) ≤ 1, it follows:

0 ≥
∑

j∈Ind

Dj =
K∑

i=Lǫ

β − 1

β
γi(t)

 ∑

j∈Ind

po
j (i)

 , and

K∑

i=Lǫ

β − 1

β
γi(t)

 ∑

j∈Ind

po
j (i)

 ≥ − ε

2β

K∑

i=Lǫ

γi(t) ≥ −ε

2

After some straightforward calculations one obtains:

Ej =

∞∑

i=K+1

γi(t)
(
po

j (i) − po
j (K)

)

︸ ︷︷ ︸
=Fj

−
Lǫ−1∑

i=0

γi(t)p
o
j (K)

︸ ︷︷ ︸
=−Gj

+

K∑

i=Lǫ

1 − β

β
γi(t)p

o
j (K)

︸ ︷︷ ︸
=Hj

In a similar way as for Cj and Dj , we obtain:

−ε

4
≤
∑

j∈Ind

Gj ≤ 0, and 0 ≤
∑

j∈Ind

Hj ≤ ε

2β

K∑

i=Lǫ

γi(t) ≤
ε

2

i

i

i

i

i

i

i

i

B.2. CRITERIA FOR STEADY-STATE DETECTION 195

To obtain bounds for Fj , we first rewrite the equation for Fj in the following way:

Fj =

∞∑

i=K+1

γi(t)(p
o
j (i) − po,∗

j) +

∞∑

i=K+1

γi(t)(p
o,∗
j − po

j (K))

From the initial condition ∀i ≥ K :
∥∥∥−−→po,∗ −−−−→

po (i)
∥∥∥
∞

v
≤ δ, and

∑∞
i=K+1 γi(t) ≤ 1

it follows:

− δ ≤
∞∑

i=K+1

γi(t)(p
o,∗
j − po

j (K)) ≤ δ, and

−δ ≤
∞∑

i=K+1

γi(t)(p
o
j (i) − po,∗

j) ≤ δ

Thus −2δ ≤ Fj ≤ 2δ and then it directly follows that:

−2δ|Ind| ≤
∑

j∈Ind

Fj ≤ 2δ|Ind|

By gathering all results, we obtain:
∣∣∣∣∣∣

∑

j∈Ind

(
πo,∗

j (t) − πo
j (t)

)
∣∣∣∣∣∣
≤ 2δ|Ind| + 3

4
ε

3. (K < Lǫ): For this case, we have πo
j (t) = po

j (K)
∑∞

i=0 γi(t) and:

πo,∗
j (t) − πo

j (t) =
∞∑

i=0

γi(t)
(
po

j (i) − po
j (K)

)

Splitting the right-hand side of this equation yields:

K∑

i=0

γi(t)
(
po

j (i) − po
j (K)

)

︸ ︷︷ ︸
=Ij

+

∞∑

i=K+1

γi(t)
(
po

j (i) − po
j (K)

)

︸ ︷︷ ︸
=Fj

Due to K < Lǫ, it follows that:

0 ≤
∑

j∈Ind

K∑

i=0

γi(t)p
o
j (i) ≤

K∑

i=0

γi(t) ≤
ε

4
, and similarly

0 ≤
∑

j∈Ind

K∑

i=0

γi(t)p
o
j (K) ≤

K∑

i=0

γi(t) ≤
ε

4

Thus we have:
−ε

4
≤
∑

j∈Ind

Ij ≤ ε

4

i

i

i

i

i

i

i

i

196 APPENDIX B. ON-THE-FLY STEADY-STATE DETECTION

For Fj we already have (cf. case 2):

−2δ|Ind| ≤
∑

j∈Ind

Fj ≤ 2δ|Ind|

Gathering the results yields:
∣∣∣∣∣∣

∑

j∈Ind

(
πo,∗

j (t) − πo
j (t)

)
∣∣∣∣∣∣
≤ 2δ|Ind| + ε

4

Summarizing the results of the three proof cases, we obtain the following. For arbitrary
0 ≤ K < ∞, due to max{ ε

2 , 2δ|Ind| + 3
4ε, 2δ|Ind|+ ε

4} = 2δ|Ind| + 3
4ε:

∣∣∣∣∣∣

∑

j∈Ind

(
πo,∗

j (t) − πo
j (t)

)
∣∣∣∣∣∣
≤ 2δ|Ind| + 3

4
ε

�

Corollary 37 Under the same conditions as Theorem 5:

∥∥∥
−−→
po,∗ −−−−−→

po (K)
∥∥∥
∞

v
≤ ε

8|Ind| implies

∣∣∣∣∣∣

∑

j∈Ind

(
πo,∗

j (t) − πo
j (t)

)
∣∣∣∣∣∣
≤ ε

Proof According to Theorem 5 if
∥∥∥−−→po,∗ −−−−−→

po (K)
∥∥∥
∞

v
≤ δ then:

∣∣∣∣∣∣

∑

j∈Ind

(
πo,∗

j (t) − πo
j (t)

)
∣∣∣∣∣∣
≤ 2δ|Ind| + 3

4
ε

By taking δ = ε
8|Ind| , we have:

∣∣∣∣∣∣

∑

j∈Ind

(
πo,∗

j (t) − πo
j (t)

)
∣∣∣∣∣∣
≤ 2ε|Ind|

8|Ind| +
3

4
ε = ε

�

B.2.2 Backward computations

Let π∗
j (t) be the j’th component of

−−−→
π∗ (t), and p∗j be the j’th component of

−→
p∗.

Theorem 38 Let (S, P, L) be an aperiodic DTMC with Ind ⊆ S such that ∀j ∈ Ind :

P (j, j) = 1,
−−→
p (i) = Pi · −−→1Ind and steady-state vector

−→
p∗. If for some K and δ > 0 it

holds that ∀i ≥ K : ∀j ∈ N[1,N] : 0 ≤ p∗j − pj (i) ≤ δ, then for

−−−→
π∗ (t) =

∞∑

i=0

γi(t)
−−→
p (i)

i

i

i

i

i

i

i

i

B.2. CRITERIA FOR STEADY-STATE DETECTION 197

and for inaccuracy ε > 0:

−−→
π (t) =

−−−→
p (K) , if K < Lǫ

1
W

∑K
i=Lǫ

wi(t)
−−→
p (i) +

−−−→
p (K)

(
1 − 1

W

∑K
i=Lǫ

wi(t)
)

, if Lǫ ≤ K ≤ Rǫ

1
W

∑Rǫ

i=Lǫ
wi(t)

−−→
p (i) , if K > Rǫ

the following inequality holds:

∥∥∥
−−−→
π∗ (t) −−−→

π (t)
∥∥∥
∞

v
≤ δ +

3

4
ε

Here W , wi(t), Lǫ, and Rǫ are computed using the Fox-Glynn algorithm, such that∑Lǫ−1
i=0 γi(t) ≤ ε

4 , and
∑∞

i=Rǫ+1 γi(t) ≤ ε
4 .

Proof Since P is aperiodic, the steady-state vector
−→
p∗ exists. Due to the Fox-Glynn

algorithm used with the refined desired error bound ε
2 (cf. Proposition 4), we have

wi(t) = αγi(t), γi(t) = e−q·t (q·t)i

i! , W =
∑Rǫ

i=Lǫ
wi(t), α 6= 0 is some constant, and Lǫ,

Rǫ such that β =
∑Rǫ

i=Lǫ
γi(t) ≥ 1 − ε

2 .

Consider now the three cases as distinguished for
−−→
π (t):

1. (K > Rǫ): The steady-state detection is not involved. Thus the error bound of
the original Fox-Glynn method is applicable.

π∗
j (t) − πj (t) =

∞∑

i=0

γi(t)pj (i) −
Rǫ∑

i=Lǫ

γi(t)

β
pj (i)

Like in the proof of Proposition 4 we get:

π∗
j (t) − πj (t) =

Lǫ−1∑

i=0

γi(t)pj (i) +

∞∑

i=Rǫ+1

γi(t)pj (i)

︸ ︷︷ ︸
=Aj

+

Rǫ∑

i=Lǫ

β − 1

β
γi(t)pj (i)

︸ ︷︷ ︸
=Bj

The vector
−−→
p (i) is such that 0 ≤ pj (i) ≤ 1. Using the initial conditions for∑Lǫ−1

i=0 γi(t),
∑∞

i=Rǫ+1 γi(t) and β it easily follows that:

0 ≤ Aj ≤ ε

2
and − ε

2
≤ Bj ≤ 0

Gathering the results yields:

∣∣π∗
j (t) − πj (t)

∣∣ ≤ ε

2
(B.10)

2. (Lǫ ≤ K ≤ Rǫ): In this case it follows by definition:

πj (t) =
1

W

K∑

i=Lǫ

wi(t)pj (i) + pj (K)

(
1 − 1

W

K∑

i=Lǫ

wi(t)

)
, and

i

i

i

i

i

i

i

i

198 APPENDIX B. ON-THE-FLY STEADY-STATE DETECTION

π∗
j (t) − πj (t) =

∞∑

i=0

γi(t)pj (i) −
K∑

i=Lǫ

γi(t)

β
pj (i) − pj (K)

(
1 −

K∑

i=Lǫ

γi(t)

β

)

The right-hand side of this equation can be rewritten after some standard calcula-
tions into Cj+Dj+Ej , where Cj =

∑Lǫ−1
i=0 γi(t)pj (i) , Dj =

∑K
i=Lǫ

β−1
β γi(t)pj (i)

and Ej =
∑∞

i=K+1 γi(t)pj (i) − pj (K)
(
1 −∑K

i=Lǫ

γi(t)
β

)
.

From the fact that 0 ≤ pj (i) ≤ 1, and by assumption
∑Lǫ−1

i=0 γi(t) ≤ ε
4 :

0 ≤ Cj ≤ ε

4

From 1 − ε
2 ≤ β ≤ 1 and 0 ≤ pj (i) ≤ 1, it follows:

− ε

2
≤ − ε

2β

K∑

i=Lǫ

γi(t) ≤
K∑

i=Lǫ

β − 1

β
γi(t) = Dj ≤ 0

After some straightforward computations one obtains:

Ej =

∞∑

i=K+1

γi(t)
(
pj (i) − pj (K)

)

︸ ︷︷ ︸
=Fj

−
Lǫ−1∑

i=0

γi(t)pj (K)

︸ ︷︷ ︸
=−Gj

+

K∑

i=Lǫ

1 − β

β
γi(t)pj (K)

︸ ︷︷ ︸
Hj

(B.11)
In a similar way as for Cj and Dj , we obtain:

− ε

4
≤ Gj ≤ 0, and 0 ≤ Hj ≤ ε

2β

K∑

i=Lǫ

γi(t) ≤
ε

2

To derive bounds for Fj , we first rewrite the equation for Fj in the following way:

Fj =

∞∑

i=K+1

γi(t)(pj (i) − p∗j) +

∞∑

i=K+1

γi(t)(p
∗
j − pj (K))

From the initial condition ∀i ≥ K : ∀j ∈ N[1,N] : 0 ≤ p∗j − pj (i) ≤ δ, and
0 ≤ pj (i) ≤ 1 it follows:

0 ≤
∞∑

i=K+1

γi(t)(p
∗
j − pj (K)) ≤ δ,

and because of the fact that probabilities pj (i) are not decreasing, due to the
initial condition ∀j ∈ Ind : P (j, j) = 1:

− δ ≤
∞∑

i=K+1

γi(t)(pj (i) − p∗j) ≤ 0

From which we conclude that −δ ≤ Fj ≤ δ. Then, by gathering all results, we
obtain: ∣∣π∗

j (t) − πj (t)
∣∣ ≤ δ +

3

4
ε

i

i

i

i

i

i

i

i

B.2. CRITERIA FOR STEADY-STATE DETECTION 199

3. (K < Lǫ): For this case, we have:

πj (t) = pj (K)
∞∑

i=0

γi(t), and π∗
j (t) − πj (t) =

∞∑

i=0

γi(t)
(
pj (i) − pj (K)

)

Splitting the right-hand side of this equation yields:

K∑

i=0

γi(t)
(
pj (i) − pj (K)

)

︸ ︷︷ ︸
=Ij

+

∞∑

i=K+1

γi(t)
(
pj (i) − pj (K)

)

︸ ︷︷ ︸
=Fj

Due to K < Lǫ, it follows that:

0 ≤
K∑

i=0

γi(t)pj (i) ≤ ε

4
, and 0 ≤

K∑

i=0

γi(t)pj (K) ≤ ε

4

Thus we have − ε
4 ≤ Ij ≤ ε

4 and for Fj(cf. case 2) −δ ≤ Fj ≤ δ. Gathering the
results yields: ∣∣π∗

j (t) − πj (t)
∣∣ ≤ δ +

ε

4

Summarizing the results of the three proof cases, we obtain the following. For arbitrary
0 ≤ K < ∞ and any j ∈ N[1,N], due to max{ ε

2 , δ + 3
4ε, δ + ε

4} = δ + 3
4ε:

∣∣π∗
j (t) − πj (t)

∣∣ ≤ δ +
3

4
ε, that implies

∥∥∥
−−−→
π∗ (t) −−−→

π (t)
∥∥∥
∞

v
≤ δ +

3

4
ε.

�

Corollary 39 Under the same conditions as Theorem 7:

∥∥∥
−→
p∗ −−−−→

p (K)
∥∥∥
∞

v
≤ ε

4
implies

∥∥∥
−−−→
π∗ (t) −−−→

π (t)
∥∥∥
∞

v
≤ ε

Proof According to Theorem 7 if
∥∥∥−→p∗ −

−−−→
p (K)

∥∥∥
∞

v
≤ δ then:

∣∣π∗
j (t) − πj (t)

∣∣ ≤ δ +
3

4
ε

By taking δ = ε
4 , we have for any j ∈ N[1,N]:

∣∣π∗
j (t) − πj (t)

∣∣ ≤ ε

4
+

3

4
ε = ε, that implies

∥∥∥
−−−→
π∗ (t) −−−→

π (t)
∥∥∥
∞

v
≤ ε.

�

i

i

i

i

i

i

i

i

200 APPENDIX B. ON-THE-FLY STEADY-STATE DETECTION

B.3 Safely detecting stationarity

This appendix contains proofs of Section 3.4.

Proposition 40 For any state s in CTMC (S, Q, L), time-bounded property A U[0,t] G
and QB = Q [I ∪ G] [BA,G] we have:

Prob
(
s, A U[0,t] G

)
in (S, Q, L) = Prob

(
s, S U[t,t] G

)
in (S,QB)

Proof In [8] the following is proved:

Prob
(
s, A U[0,t] G

)
in (S, Q, L) = Prob

(
s, S U[t,t] G

)
in (S,Q [I ∪ G])

It is also clear that

Prob
(
s, S U[t,t] G

)
in (S,Q [I ∪ G]) = Prob

(
s, S U[t,t] G

)
in (S,QB)

The latter is due to the fact, that for a BSCC B in Q [I ∪ G]:

if ∃s1 ∈ B : s1 ∈ A \ G then ∀s2 ∈ B : s2 ∈ A \ G

and thus from any state s1 ∈ BA,G it is impossible to reach G. �

Theorem 41 For the stochastic matrix PB obtained after uniformizing CTMC (S, QB),
for any K and δ > 0 the following holds:

∑

j∈A\(G∪BA,G)

ps
j (K) ≤ δ ⇒ ∀i ≥ K :

∥∥∥
−−→
ps,∗ −−−−→

ps (i)
∥∥∥
∞

v
≤ δ

Where ps
j (i) is the j’th component of

−−−→
ps (i) =

−−→
1{s} · (PB)

i
, and

−−→
ps,∗ is the steady-state

probability for PB when starting from state s.

Proof In [81] it was noticed that in Q [I ∪ G] all G states can be collapsed into one
state, without affecting Prob

(
s, S U[t,t] G

)
. The same can be done with the I states.

In QB the BA,G states are also made absorbing, as this does not affect
−−−→
ps (i). Thus,

as a trivial extension, we suggest to collapse all BA,G ∪ I states of QB into a single
absorbing state. This yields a matrix, denoted QB, with two absorbing states, one
that corresponds to G states - say state N , and one that corresponds to BA,G ∪ I
states - say state N − 1. Here N denotes the number of states that result after the
described procedure. The remaining states N − 2 are transient states from the set
A \ (G ∪ BA,G) = {1, · · · , N − 2}.

The rest of this proof is divided into three steps:

1. First, let us prove that for any K and δ > 0:

∑

j∈N[1,N−2]

ps
j (K) ≤ δ ⇒

∥∥∥
−−→
ps,∗ −−−−−→

ps (K)
∥∥∥
∞

v
≤ δ (B.12)

By definition of the l∞-norm:
∥∥∥
−−→
ps,∗ −−−−−→

ps (K)
∥∥∥
∞

v
= max

j∈N[1,N]

|ps,∗
j − ps

j (K) | (B.13)

i

i

i

i

i

i

i

i

B.3. SAFELY DETECTING STATIONARITY 201

Since states 1, · · · , N − 2 are transient ∀j ∈ N[1,N−2] : ps,∗
j = 0, and thus (B.13)

equals:

max

{
max

j∈N[1,N−2]

ps
j (K) , max

j∈{N−1,N}
|ps,∗

j − ps
j (K) |

}
(B.14)

Using
∑

j∈N[1,N−2]
ps

j (K) ≤ δ we get that (B.14) is bounded from above by:

max

{
δ, max

j∈{N−1,N}
|ps,∗

j − ps
j (K) |

}
(B.15)

Vectors
−−−−→
ps (K) and

−−→
ps,∗ are distributions:

N−2∑

j=1

ps
j (K) + ps

N−1 (K) + ps
N (K) = 1 (B.16)

ps,∗
N−1 + ps,∗

N = 1 (B.17)

From (B.16) and (B.17) it follows:

ps,∗
N−1 − ps

N−1 (K) + ps,∗
N − ps

N (K) =

N−2∑

j=1

ps
j (K)

As the probability mass is flowing into the G, I and BA,G states, we have:

0 ≤ ps,∗
N−1 − ps

N−1 (K) and 0 ≤ ps,∗
N − ps

N (K)

and thus:

|ps,∗
N−1 − ps

N−1 (K) | + |ps,∗
N − ps

N (K) | =

N−2∑

j=1

ps
j (K)

From the latter and the initial condition
∑N−2

j=1 ps
j (K) ≤ δ we get:

|ps,∗
N−1 − ps

N−1 (K) | + |ps,∗
N − ps

N (K) | ≤ δ

which induces:

|ps,∗
N−1 − ps

N−1 (K) | ≤ δ and |ps,∗
N − ps

N (K) | ≤ δ

Finally, it follows that (B.15) is limited from above by:

max{δ, δ, δ} = δ

which yields (B.12).

2. The next step is to prove that for any K:

∀Z > 0 :
∑

j∈N[1,N−2]

ps
j (K) ≥

∑

j∈N[1,N−2]

ps
j (K+Z) (B.18)

i

i

i

i

i

i

i

i

202 APPENDIX B. ON-THE-FLY STEADY-STATE DETECTION

The latter clearly follows from the fact that for any K:
∑

j∈N[1,N−2]

ps
j (K) ≥

∑

j∈N[1,N−2]

ps
j (K+1) (B.19)

Equation (B.19) follows from the fact that states N − 1 and N are absorbing
states in PB =

(
pB

i,j

)
, in other words:

ps
N−1 (K + 1) =

∑

j∈N[1,N−2]

ps
j (K) · pB

j,N−1

︸ ︷︷ ︸
≥0

+ps
N−1 (K) (B.20)

ps
N (K + 1) =

∑

j∈N[1,N−2]

ps
j (K) · pB

j,N

︸ ︷︷ ︸
≥0

+ps
N (K) (B.21)

Vectors
−−−−→
ps (K) and

−−−−−−→
ps (K+1) are distributions, thus:

∑

j∈N[1,N−2]

ps
j (K) −

∑

j∈N[1,N−2]

ps
j (K+1) =

(
1−ps

N−1 (K)−ps
N (K)

)
−
(
1−ps

N−1 (K + 1)−ps
N (K + 1)

)
(B.22)

From (B.20), (B.21) and (B.22) we obtain:
∑

j∈N[1,N−2]

ps
j (K) −

∑

j∈N[1,N−2]

ps
j (K+1) =

ps
N−1 (K + 1) − ps

N−1 (K)︸ ︷︷ ︸
≥0

+ ps
N (K + 1) − ps

N (K)︸ ︷︷ ︸
≥0

≥ 0

which yields (B.19).

3. The last step is to notice that, due to (B.18), for any K and δ > 0:
∑

j∈N[1,N−2]

ps
j (K) ≤ δ ⇒ ∀i ≥ K :

∑

j∈N[1,N−2]

ps
j (i) ≤ δ

and from (B.12) for any i:

∑

j∈N[1,N−2]

ps
j (i) ≤ δ ⇒

∥∥∥
−−→
ps,∗ −−−−→

ps (i)
∥∥∥
∞

v
≤ δ

This proves the claim.

�

Theorem 42 For the stochastic matrix PB obtained after uniformizing CTMC (S, QB),
for any K and δ > 0 the following holds:

∥∥∥∥
−→
1 −

(−−−→
p (K) +

−−−−→
pB (K)

)∥∥∥∥
∞

v

≤ δ ⇒ ∀i ≥ K :
∥∥∥
−→
p∗ −−−→

p (i)
∥∥∥
∞

v
≤ δ (B.23)

where
−−→
p (i) = (PB)

i · −→1G,
−−−→
pB (i) = (PB)

i · −−−−−→1BA,G∪I, and
−→
p∗ = limi→∞ (PB)

i · −→1G.

i

i

i

i

i

i

i

i

B.3. SAFELY DETECTING STATIONARITY 203

Proof Consider the j’th component of vectors in (B.23), then follow the proof of
Theorem 10, taking into account that:

1 −
(
pj (i) + pB

j (i)
)

=
∑

k∈A\(G∪BA,G)

pj
k (i)

�

i

i

i

i

i

i

i

i

204 APPENDIX B. ON-THE-FLY STEADY-STATE DETECTION

i

i

i

i

i

i

i

i

Appendix C

Model Checking by Discrete
Event Simulation

This section contains proofs of the theorems from Chapter 6.

C.1 Unbounded-until operator

This Appendix contains proofs for Section 6.2.

Proposition 43 For any N ∈ N the inequality Al ≤ αg ≤ Ar holds for any:

Al ∈
{
αN

g , 1 −
(
αN

b + αN
t

)
, 1 − αN

b,t

}
and Ar ∈

{
αN

g,t, αN
g + αN

t , 1 − αN
b

}
.

Proof According to Proposition 18 for any N we have:

αN
g + αN

b + αN
t = 1, and αg + αb = 1.

Here the probability αN
t is non-increasing with the increase of N and the probabilities

αN
g and αN

b are non-decreasing with the increase of N . We also have lim
N→∞

(
αN

t

)
= 0,

lim
N→∞

(
αN

g

)
= αg and lim

N→∞

(
αN

b

)
= αb, where the first limit holds because in the long

run the probability to be in a transient state is zero.
Clearly, considering any epoch N in the limit the probability mass αN

t is distributed
between αg and αb. Therefore we can conclude that:

αN
g ≤ αg ≤ αN

g + αN
t .

From Proposition 18 it follows that:

αN
g = 1 −

(
αN

b + αN
t

)
= 1 − αN

b,t, and αN
g + αN

t = αN
g,t = 1 − αN

b ,

and this concludes the proof. �

The following lemmas are purely technical but they are necessary for several proofs
of this Appendix.

205

i

i

i

i

i

i

i

i

206 APPENDIX C. MODEL CHECKING BY DISCRETE EVENT SIMULATION

Lemma 44 For any k ∈ N , let Γk
N be computed on a sample

−→
PN =

(
P1

N , . . . ,PM
N

)
of

M ∈ N≥1 observations, then the following holds:

Γg,b,t
N = Γg

N + Γb
N + Γt

N = M, (C.1)

Γg,t
N = Γg

N + Γt
N , (C.2)

Γb,t
N = Γb

N + Γt
N . (C.3)

Proof Let us sketch the proofs of the given equalities.
Considering Definition 19 it is clear that Γk

N represents the number of “k”-type

states in the sample
−→
PN of size M . The simulated Markov chain PB has only three

disjoint sets of states: “good”, “bad” and “transient” states, which are “counted” by
Γg

N , Γb
N and Γt

N correspondingly. The latter implies that Equation (C.1) holds.
The proof of Equation (C.2) is trivial since fg,t (PN) = fg (PN)+ft (PN). Similarly,

we can prove Equation (C.3). �

Lemma 45 For any k ∈ N , let Γk
N be computed on a sample

−→
PN =

(
P1

N , . . . ,PM
N

)
of

M ∈ N≥1 observations, then the following holds:

X
N

g + X
N

b + X
N

t = 1, X
N

g,t = X
N

g + X
N

t , X
N

b,t = X
N

b + X
N

t .

Proof This is a trivial consequence of Lemma 44 and Equation 6.5. �

Lemma 46 For a sample
−→
PN =

(
P1

N , . . . ,PM
N

)
of M ∈ N≥1 independent observations,

Xi = fk

(
Pi

N

)
, with k ∈ N , and X

N

k with V
N

k computed by Equations (5.1) and (5.7)
correspondingly, the following holds:

X
N

k =
Γk

N

M
, V

N

k =

√√√√ 1

M − 1

M∑

i=1

(
fk

(
Pi

N

)
− Γk

N

M

)2

=

=

√
Γk

N ·
(
M − Γk

N

)

M · (M − 1)
=

√
X

N

k ·
(
M − Γk

N

)

M − 1
.

Proof The case of X
N

k trivially follows from Definition 19 and Equation (5.1).

i

i

i

i

i

i

i

i

C.1. UNBOUNDED-UNTIL OPERATOR 207

Let us consider V
N

k :

V
N

k =

√√√√ 1

M − 1

M∑

i=1

(
fk

(
Pi

N

)
− X

N

k

)2

=

=

√√√√ 1

M − 1

M∑

i=1

(
fk
(
Pi

N

)
− Γk

N

M

)2

=

=

√√√√ 1

M − 1

(
Γk

N ·
(

1 − Γk
N

M

)2

+
(
M − Γk

N

)
·
(

Γk
N

M

)2
)

=

=

√
1

M2 · (M − 1)

(
Γk

N ·
(
M − Γk

N

)2
+
(
M − Γk

N

)
·
(
Γk

N

)2)
=

=

√
Γk

N ·
(
M − Γk

N

)

M · (M − 1)
=

√
X

N

k ·
(
M − Γk

N

)

M − 1
, (C.4)

here the needed representations are emphasized with the bold font. �

C.1.1 Dependency of the confidence intervals

In this section we give proofs of the dependency between certain confidence intervals
in cases of finite sample size M and M → ∞.

The following density functions are going to be used. They are an obvious conse-
quence of the way αN

k is defined for any k ∈ N :

Prob (fk (PN) = i) =

{
αN

k iff i = 1

1 − αN
k iff i = 0

, (C.5)

for all k, l ∈ {g, b, t}, k 6= l:

Prob (fk (PN) = i, fl (PN) = j) =

αN
k iff i = 1 ∧ j = 0

αN
l iff i = 0 ∧ j = 1

0 iff i = 1 ∧ j = 1

1 −
(
αN

k + αN
l

)
iff i = 0 ∧ j = 0

, (C.6)

and two more joint-density functions:

Prob
(
fg (PN) = i, fg,t (PN) = j

)
=

0 iff i = 1 ∧ j = 0

αN
t iff i = 0 ∧ j = 1

αN
g iff i = 1 ∧ j = 1

1 − αN
g,t iff i = 0 ∧ j = 0

, (C.7)

Prob
(
fb (PN) = i, fb,t (PN) = j

)
=

0 iff i = 1 ∧ j = 0

αN
t iff i = 0 ∧ j = 1

αN
b iff i = 1 ∧ j = 1

1 − αN
b,t iff i = 0 ∧ j = 0

. (C.8)

Below we are going to prove the dependency of the c. i. in the above-mentioned cases.

i

i

i

i

i

i

i

i

208 APPENDIX C. MODEL CHECKING BY DISCRETE EVENT SIMULATION

Case: finite M ∈ N≥2.

Let us consider the following technical lemmas.

Lemma 47 For any constants a ∈ N≥2 and b ∈ R[0,1] the function:

Υ̃a,b (x) =
x − a · b√

x·(a−x)
a−1

, (C.9)

is continuous and increasing on x ∈ R(0,a).

Proof In order to show that Υ̃a,b (x) is continuous on R(0,a) it is enough to show that

it has the first derivative. Differentiating Υ̃a,b (x) by x gives us:

Υ̃′
a,b (x) =

a

2 ·
√

x·(a−x)
a−1

· (1 − 2 · b) · x + a · b
x · (a − x)

. (C.10)

that takes finite values for all x ∈ R(0,a).

In order to prove that Υ̃a,b (x) is increasing on R(0,a) it is enough to show that

Υ̃′
a,b (x) is strictly positive on this interval. Then, considering Equation (C.10), it

suffices to prove that:
(1 − 2 · b) · x + a · b > 0 (C.11)

for all values of x, a and b, as stated in the conditions of this lemma. Note that

x · (a − x) > 0 for x ∈ R(0,a), and
√

x·(a−x)
a−1 is taken with the positive sign.

First, let us analyze when Equation (C.11) turns into zero. In fact it happens
only for x1 = a·b

2·b−1 under the condition b 6= 1
2 , because a ≥ 2. It is easy to see that

x1 6∈ R(0,a) for any a ∈ N≥2 and b ∈ R[0,1] \
{

1
2

}
, consider the two cases:

1. If b ∈ R[0, 12)
then clearly x1 < 0.

2. If b ∈ R(1
2 ,1] then x1 > 0, but we need to have x1 < a. Which is equivalent to

a < a · b. The latter does not hold for the given choice of b.

Since Equation (C.11) defines a continuous function which does not turn into zero
on R(0,a), then it is either positive or negative on this interval. Thus, to find out the
sign of the function, it is enough to sample it on one combination of parameters. For
example, taking b = 1 and x = a − 1 turns Equation (C.11) into 1 > 0. Therefore

Υ̃a,b (x) is an increasing function on R(0,a). �

Lemma 48 For any k ∈ N , the c. i. of αN
k , given by Equation (6.2) is defined by the

r. v. Υk

(
Γk

N

)
= Υ̃M,αN

k

(
Γk

N

)
, where Υ̃a,b (x) is given by Equation (C.9) of Lemma 47.

Proof The c. i. of αN
k , see Equation (6.2), is based on the r. v. defined in Equation (5.3)

with the unknown variance σ substituted by the sample variance V , provided by Equa-
tion (5.7), and the point estimate X computed by Equation (5.1). Therefore, for the
case of αN

k , the r. v. defined by Equation (5.3) looks as follows:

X
N

k − αN
k

V
N

k /
√

M
, (C.12)

i

i

i

i

i

i

i

i

C.1. UNBOUNDED-UNTIL OPERATOR 209

and defines the c. i. of αN
k in the following way:

Prob

(
−z̃n (β) ≤ X

N

k − αN
k

V
N

k /
√

M
≤ z̃n (β)

)
≈ 1 − β. (C.13)

The latter is a trivial statement, since Equation (6.2), together with Equation (6.4), is
equivalent to Equation (C.13).

The the formula (that defines a r. v.) given by Equation (C.12) can obviously be

rewritten, using Definition 19 and Lemma 46, as a function Υk

(
Γk

N

)
= Υ̃M,αN

k

(
Γk

N

)

of Γk
N . �

Lemma 49 Let αN
k ∈ R(0,1) for any k ∈ N ,

−→
PN =

(
P1

N , . . . ,PM
N

)
is a sample of M ∈

N≥2 independent observations and Γk
N ∈ N[0,M] then Υk

(
Γk

N

)
∈ R iff Γk

N ∈ N(0,M),

lim
Γk

N
→0

(
Υk

(
Γk

N

))
= −∞ and lim

Γk
N
→M

(
Υk

(
Γk

N

))
= +∞.

Proof Clearly, by definition of Γk
N we have Γk

N ∈ N[0,M], and by Lemma 48:

Υk

(
Γk

N

)
=

Γk
N − M · αN

k√
Γk

N ·(M−Γk
N)

M−1

,

where M − 1 > 0, because M ∈ N≥2.
Since, αN

k ∈ R(0,1), then obviously lim
Γk

N→0

(
Υk

(
Γk

N

))
= −∞ and lim

Γk
N→M

(
Υk

(
Γk

N

))
=

+∞. For Γk
N ∈ N(0,M) function Υk

(
Γk

N

)
clearly takes finite real values. �

Further we will make no distinction between +∞ and −∞, in both cases we will use
just ∞. Moreover, for technical reasons, we extend function Υk

(
Γk

N

)
(by continuity)

and write Υk

(
Γk

N

)
= ∞ for Γk

N ∈ {0, M}.

Lemma 50 Let αN
k ∈ R(0,1) for any k ∈ N , then for a sample

−→
PN =

(
P1

N , . . . ,PM
N

)

of M ∈ N≥2 independent observations:

Prob
“

Υk

“

Γk
N

”

= A
”

=

(

Prob
`

Γk
N = 0

´

+ Prob
`

Γk
N = M

´

, A = ∞

Prob
`

Γk
N = C

´

, A < ∞∧ A = Υk (C)

(C.14)

Note that, since Γk
N ∈ N[0,M] is a discrete r. v., then Prob

(
Γk

N = C
)

= 0 if C 6∈ N[0,M].

Proof Lemma 49 implies that for αN
k 6∈ {0, 1} the value of Υk

(
Γk

N

)
is infinite in case

of Γk
N ∈ {0, M} and is a finite real value for Γk

N ∈ R(0,M).
The former case implies:

Prob
“

Υk

“

Γk
N

”

= ∞
”

= Prob
“

Γk
N = 0 ∨ Γk

N = M
”

= Prob
“

Γk
N = 0

”

+ Prob
“

Γk
N = M

”

,

where the last equality is because the events Γk
N = 0 and Γk

N = M are disjoint, i. e.
they can not hold simultaneously.

In the latter case, Lemma 47 is applicable because for all k ∈ N we have αN
k ∈ R[0,1].

By this lemma Υ̃a,b (x) is an increasing function on R(0,a), implying that ∀x, y ∈: x 6=

i

i

i

i

i

i

i

i

210 APPENDIX C. MODEL CHECKING BY DISCRETE EVENT SIMULATION

y ⇔ Υ̃a,b (x) 6= Υ̃a,b (y). Therefore, Υk

(
Γk

N

)
is finite and injective on R(0,M), meaning

that:
Prob

(
Υk

(
Γk

N

)
= A

)
= Prob

(
Γk

N = C
)

with A < ∞ and C such that A = Υk (C). �

Lemma 51 For a sample
−→
PN =

(
P1

N , . . . ,PM
N

)
of M ∈ N≥1 independent observations,

seen as a sequence of r. v., and any k ∈ N :

Prob
(
Γk

N = C
)

=

{ (
M
C

)
·
(
αN

k

)C ·
(
1 − αN

k

)M−C
, C ∈ N[0,M]

0 , else
. (C.15)

Proof First, let us notice that
(
M
C

)
is a binomial coefficient, giving the number of

different combinations a sub sample of size C can be chosen from a sample of size

M . Considering
−→
PN as a sequence of r. v. we have that Γk

N is a sum of M i. i. d.
r. v. According to Equation (C.5), these r. v. take value 1 with probability αN

k and 0
with probability 1 − αN

k . Then the fact that Γk
N = C with C ∈ N[0,M] means that C

r. v. take values 1 and M − C r. v. take values 0. The probability of such an event is(
1 − αN

k

)M−C ·
(
αN

k

)C
, plus there are

(
M
C

)
possible ways the r. v. that take value 1 can

be distributed in the sample.
In case C 6∈ N[0,M] the probability Prob

(
Γk

N = C
)

is clearly zero. �

Lemma 52 Let αN
k ∈ R(0,1) for any k ∈ N , then for a sample

−→
PN =

(
P1

N , . . . ,PM
N

)

of M ∈ N≥2 independent observations, and any k, l ∈ N such that k 6= l:

Prob
“

Υk

“

Γk
N

”

= A, Υl

“

Γl
N

”

= B
”

=

=

8

>

>

>

>

>

<

>

>

>

>

>

:

Prob
`

Γk
N = 0, Γl

N = 0
´

+ Prob
`

Γk
N = 0, Γl

N = M
´

+

Prob
`

Γk
N = M, Γl

N = 0
´

+ Prob
`

Γk
N = M, Γl

N = M
´

, A = ∞, B = ∞

Prob
`

Γk
N = C, Γl

N = 0
´

+ Prob
`

Γk
N = C, Γl

N = M
´

, A < ∞, B = ∞

Prob
`

Γk
N = 0, Γl

N = D
´

+ Prob
`

Γk
N = M, Γl

N = D
´

, A = ∞, B < ∞

Prob
`

Γl
N = C, Γl

N = D
´

, A < ∞, B < ∞

with C and D such that A = Υk (C) and B = Υl (D). Note that, since Γk
N , Γl

N ∈ N[0,M]

are discrete r. v., then, for example, Prob
(
Γl

N = C, Γl
N = D

)
= 0 if C 6∈ N[0,M].

Proof Similar to the proof of Lemma 50, this proof is solely based on Lemma 49 and
Lemma 47. Let us consider the following cases:

• A = ∞, B = ∞: For any k ∈ N we have Υk

(
Γk

N

)
= ∞ iff Γk

N = 0 or Γk
N = M ,

where the events Γk
N = 0 and Γk

N = M are disjoint. The latter means that they
can not hold simultaneously. Therefore we have:

Prob
(
Υk

(
Γk

N

)
= A, Υl

(
Γl

N

)
= B

)
=

Prob
(
Γk

N = 0 ∨ Γk
N = M, Γl

N = 0 ∨ Γl
N = M

)
=

= Prob
(
Γk

N = 0, Γl
N = 0 ∨ Γl

N = M
)

+

Prob
(
Γk

N = M, Γl
N = 0 ∨ Γl

N = M
)

=

Prob
(
Γk

N = 0, Γl
N = 0

)
+ Prob

(
Γk

N = 0, Γl
N = M

)
+

Prob
(
Γk

N = M, Γl
N = 0

)
+ Prob

(
Γk

N = M, Γl
N = M

)
.

i

i

i

i

i

i

i

i

C.1. UNBOUNDED-UNTIL OPERATOR 211

• A < ∞, B = ∞: There exists a unique C ∈ R(0,M), with A = Υk (C), and

Υl

(
Γl

N

)
= B iff Γl

N = 0 or Γl
N = M . The latter events are disjoint and thus:

Prob
(
Υk

(
Γk

N

)
= A, Υl

(
Γl

N

)
= B

)
= Prob

(
Γk

N = C, Γl
N = 0 ∨ Γl

N = M
)

=

= Prob
(
Γk

N = C, Γl
N = 0

)
+ Prob

(
Γk

N = C, Γl
N = M

)
.

The case of A = ∞, B < ∞ is symmetric to this one.

• A < ∞, B < ∞: There exist unique C, D ∈ R(0,M), with A = Υk (C) and
B = Υl (D), and thus:

Prob
(
Υk

(
Γk

N

)
= A, Υl

(
Γl

N

)
= B

)
= Prob

(
Γk

N = C, Γl
N = D

)
.

�

Lemma 53 For a sample
−→
PN =

(
P1

N , . . . ,PM
N

)
of M ∈ N≥1 independent observations,

seen as a sequence of r. v., and any k, l ∈ N such that k 6= l:

• if l ∩ k = ∅ then:

Prob
(
Γk

N = C, Γl
N = D

)
=

{
P1 , C, D ∈ N[0,M], C + D ≤ M
0 , else

, (C.16)

• if k ⊂ l then:

Prob
(
Γk

N = C, Γl
N = D

)
=

{
P2 , C, D ∈ N[0,M], C ≤ D
0 , else

, (C.17)

• if k ∩ l 6= ∅ ∧ k 6⊂ l ∧ l 6⊂ k then:

Prob
(
Γk

N = C, Γl
N = D

)
=

{
P3 , C, D ∈ N[0,M], M ≤ D + C
0 , else

, (C.18)

where the values of P1, P2 and P3 are defined as follows:

P1 =

(
M

C

)
·
(

M − C

D

)
·
(
αN

k

)C ·
(
αN

l

)D ·
(
1 − αN

k∪l

)M−(C+D)
,

P2 =

(
M

C

)
·
(

M − C

D − C

)
·
(
αN

k

)C ·
(
αN

l\k

)D−C

·
(
1 − αN

l

)M−D
,

P3 =

(
M

M − D

)
·
(

D

M − C

)
·
(
αN

k\l

)M−D

·
(
αN

l\k

)M−C

·
(
αN

k∩l

)C+D−M
.

Proof Clearly, for all k ∈ N we have Γk
N ∈ N[0,M] and therefore unless C, D ∈ N[0,M]

the above mentioned probabilities turn into zero.
Let us consider the following two cases:

i

i

i

i

i

i

i

i

212 APPENDIX C. MODEL CHECKING BY DISCRETE EVENT SIMULATION

• k∩l = ∅: The condition implies that ∀i ∈ N[1,M] : ¬
(
fk

(
Pi

N

)
= 1 ∧ fl

(
Pi

N

)
= 1
)
,

meaning that Γk
N and Γl

N “count” different kind of states in the sample. Now,
by Lemma 44 we have Γk

N + Γl
N ≤ M , which implies that for C + D > M :

Prob
(
Γk

N = C, Γl
N = D

)
= 0.

For C + D ≤ M , in a sample of M observations we have
(
M
C

)
possible sub-

samples with states of type k, for each of which, in the remaining part of the
sample, we have

(
M−C

D

)
possible sub-samples with states of type l. In total we

get
(
M
C

)
·
(
M−C

D

)
unique possibilities to have a sample with C states of type k and

D states of type l. Clearly the probability of each such sample is computed as:

(
αN

k

)C ·
(
αN

l

)D ·
(
1 − αN

k∪l

)M−(C+D)
,

since αN
k∪l = αN

k + αN
l by Proposition 18 and this concludes the proof of Equa-

tion (C.16).

• k ⊂ l: The condition implies that there can be Γk
N states of type k in the sample

and thus, by Lemma 44, Γl
N − Γk

N states of kind l \ k. The latter implies that
unless C ≤ D then:

Prob
(
Γk

N = C, Γl
N = D

)
= 0.

The rest of the proof goes similar to the previous case, considering that k ∩
(l \ k) = ∅ and αN

k + αN
l\k = αN

l by Proposition 18.

• k ∩ l 6= ∅ ∧ k 6⊂ l ∧ l 6⊂ k: Let m = k ∩ l, then the condition implies that

Γk
N = Γ

k\m
N + Γm

N and Γl
N = Γ

l\m
N + Γm

N .

By definition N = {{g}, {b}, {t}, {g, t}, {b, t}}, therefore we either have k = {b, t}
and l = {g, t} or k = {g, t} and l = {b, t}. Both cases are symmetric and thus let
us choose the latter one making m = {t}, k \ m = {g} and l \ m = {b}.
From Lemma 44 it follows that M ≤ Γg,t

N +Γb,t
N , implying that unless M ≤ C +D

we have:
Prob

(
Γg,t

N = C, Γb,t
N = D

)
= 0.

For the remaining cases, since Γt
N ∈ N[0,M] we can state that:

Prob
(
Γg,t

N = C, Γb,t
N = D

)
=

M∑

i=0

Prob
(
Γg,t

N = C, Γb,t
N = D, Γt

N = i
)

.

Notice that from Lemma 44 it follows that we have Γt
N = Γg,t

N + Γb,t
N −M , which

means that for all i 6= C + D − M :

Prob
(
Γg,t

N = C, Γb,t
N = D, Γt

N = i
)

= 0.

The latter implies that:

Prob
(
Γg,t

N = C, Γb,t
N = D

)
=

= Prob
(
Γg

N = M − D, Γb
N = M − C, Γt

N = C + D − M
)
,

i

i

i

i

i

i

i

i

C.1. UNBOUNDED-UNTIL OPERATOR 213

which similarly to the previous cases can be expressed as:

Prob
“

Γg,t
N = C, Γb,t

N = D
”

=

M

M − D

!

·

D

M − C

!

·
“

α
N
g

”M−D

·
“

α
N
b

”M−C

·
“

α
N
t

”C+D−M

�

Proposition 54 Let
−→
PN =

(
P1

N , . . . ,PM
N

)
be a sample of M ∈ N≥3 independent

observations. For any k, l ∈ N , k 6= l and αN
k , αN

l 6∈ {0, 1} the c. i. of αN
k and αN

l
1 are

dependent.

Proof By Lemma 48, for k, l ∈ N the c. i. of αN
k and αN

l are dependent iff r. v.
Υk

(
Γk

N

)
, Υl

(
Γl

N

)
are dependent. Which is also equivalent to showing that:

Prob
(
Υk

(
Γk

N

)
= A, Υl

(
Γl

N

)
= B

)
6= Prob

(
Υk

(
Γk

N

)
= A

)
· Prob

(
Υl

(
Γl

N

)
= B

)
,

(C.19)
with some A, B ∈ R ∪ {∞}, for the joint density function of Υk

(
Γk

N

)
and Υl

(
Γl

N

)
.

We are going to show that Equation (C.19) holds by switching from r. v. Υk

(
Γk

N

)

to Γk
N , as provided by Lemmas 50, 52, and using the density functions given by Lem-

mas 51, 53.
In the subsequent part of this proof we are not considering A = ∞ or B = ∞,

because it corresponds to the case when the sample variance V
N

k or V
N

l turns into zero
and the c. i. degrade into single points. The applicability of Central Limit Theorem
itself in this case could be questioned, since it requires the true value of variances σN

k

and σN
l to be different from zero.

By Lemma 49 for any C, D ∈ N(0,M) there exist A = Υk (C), B = Υl (D) such that
A, B < ∞. Therefore showing that Equation (C.19) holds for some A, B < ∞ can be
done by showing that:

Prob
(
Γk

N = C, Γl
N = D

)
6= Prob

(
Γk

N = C
)
· Prob

(
Γl

N = D
)
, (C.20)

holds for some C, D ∈ N(0,M). Note that Equation (C.20) follows Equation (C.19) with
the help of Lemma 50 and Lemma 52 for A = Υk (C), B = Υl (D) and A, B < ∞.

Since |N | = 5 and we have to prove the pairwise dependency of the c. i., consider
the following ten cases:

1. The c. i. of αN
g and αN

t : For finding C and D such that Equation (C.20) holds
we are going to employ Lemma 51 and Lemma 53.

First, notice that {g} ∩ {t} = ∅ and since M ≥ 3 we can always choose C, D ∈
N(0,M) : C + D > M . For such C and D, Equation (C.20) holds because by
Lemma 53 its left-hand side turns into zero, where as its right-hand side is some
non-zero value. The latter is according to Lemma 51 and the fact that for all
k ∈ N : αN

k 6∈ {0, 1}.

2. The c. i. of αN
b and αN

t : Similar to the case 1, since {b} ∩ {t} = ∅.

3. The c. i. of αN
g and αN

b : Similar to the case 1, since {g} ∩ {b} = ∅.
1Derived using Equation (6.2).

i

i

i

i

i

i

i

i

214 APPENDIX C. MODEL CHECKING BY DISCRETE EVENT SIMULATION

4. The c. i. of αN
b and αN

g,t: Similar to the case 1, since {b} ∩ {g, t} = ∅.

5. The c. i. of αN
g and αN

b,t: Similar to the case 1, since {g} ∩ {b, t} = ∅.

6. The c. i. of αN
g and αN

g,t: Similar to the case 1, but notice that {g} ⊂ {g, t}
and, since M ≥ 3, we can always choose C, D ∈ N(0,M) : D < C.

7. The c. i. of αN
t and αN

g,t: Similar to the case 6, since {t} ⊂ {g, t}.

8. The c. i. of αN
b and αN

b,t: Similar to the case 6, since {b} ⊂ {b, t}.

9. The c. i. of αN
t and αN

b,t: Similar to the case 6, since {t} ⊂ {b, t}.

10. The c. i. of αN
g,t and αN

b,t: Similar to the case 1, but notice that {g, t}∩{b, t} 6= ∅,
{g, t} 6⊂ {b, t} and {b, t} 6⊂ {g, t}. Then since M ≥ 3, we can always choose
C, D ∈ N(0,M) : C + D < M .

�

Case: M → ∞.

In order to prove dependency between the c. i. for M → ∞, we consider the covariance
of the limiting r. v. that define these c. i. Doing this we assume that the distribution
of fk (PN), for any k ∈ N , is known, allowing us to compute the covariance matrices,
and to apply the multi-dimensional Central Limit Theorem.

First, let us consider the following definitions:

Definition 24 Let Zi, 1 ≤ i ≤ K, be independent random variables with standard

normal distribution. Then
−→
Z ·B+

−→
W is the K-dimensional random vector with normal

distribution, where
−→
Z = (Z1, . . . , ZK), B = (bi,j), 1 ≤ i, j ≤ K is a K × K matrix,

and
−→
W = (W1, . . . , WK) is a K-dimensional vector.

Definition 25 A probability measure on the measurable sets of the K-dimensional
Euclidean space R

K is called a K-dimensional normal distribution iff it equals the
distribution of a K-dimensional random vector with normal distribution.

Note that the K-dimensional normal distribution is uniquely determined by its

mean value
−→
E and covariance matrix Σ, with a density function:

F
(−→

Z
)

=
1

(2π)K/2 | Σ |1/2
exp

(
−1

2

(−→
Z −−→

E
)

Σ−1
(−→

Z −−→
E
)T
)

(C.21)

where | Σ | is the determinant of Σ. To relate the K-dimensional normal distribution

to Definition 24 we should admit that Σ = B · BT and
−→
E =

−→
W .

Definition 26 An m-dimensional normal distribution is called centered if and only if−→
E = (0, . . . , 0).

i

i

i

i

i

i

i

i

C.1. UNBOUNDED-UNTIL OPERATOR 215

Theorem 55 Multi-dimensional Central Limit Theorem [18] For i = 1, 2, . . . let
−→
Zi = (Z1,i, . . . , ZK,i) be a sequence of i. i. d. random vectors. Suppose that E

[
Z2

k,i

]
<

∞, then let
−→
E = (E [Z1,i] , . . . , E [ZK,i]), and let Σ = (σn,m) be a covariance matrix

for
−→
Zi with σn,m = Cov [Zn,i, Zm,i]. Then for M → ∞:

∑M
i=1

−→
Zi − M · −→E√

M

converges in distribution to the centered normal distribution with covariance matrix Σ.

In order to apply the multi-dimensional Central Limit Theorem for showing the
dependency of the r. v. defining the c. i., it is necessary to compute covariance matrices
for the pairs of random variables fk (PN) and fl (PN) where k, l ∈ N and k 6= l.

Lemma 56 Consider r. v. fk (PN) and fl (PN), with k, l ∈ N , then:

Cov [fk (PN) , fl (PN)] = E [fk (PN) · fl (PN)] − αN
k · αN

l , (C.22)

V ar [fk (PN)] = αN
k −

(
αN

k

)2
. (C.23)

Proof Let us first prove Equation (C.22). Keeping in mind the density function defined
by Equation (C.5) and exploiting the linearity of mean:

Cov [fk (PN) , fl (PN)] = Cov [fl (PN) , fk (PN)] =

= E
[(

fk (PN) − αN
k

)
·
(
fl (PN) − αN

l

)]
=

= E [fk (PN) · fl (PN)] − αN
l · E [fk (PN)] − αN

k · E [fl (PN)] + αN
k · αN

l =

= E [fk (PN) · fl (PN)] − αN
k αN

l . (C.24)

Now, noting that V ar [fk (PN)] = Cov [fk (PN) , fk (PN)]) and fk (PN)
2

= fk (PN),
we have:

V ar [fk (PN)] = E
[
fk (PN)

2
]
−
(
αN

k

)2
= αN

k −
(
αN

k

)2
.

�

Lemma 57 Consider r. v. fk (PN) and fl (PN), with k, l ∈ N and k 6= l then the
covariance matrix Σk;l = (σi,j)i,j∈{k,l} with σi,j = Cov

[
fi (PN) , fj (PN)

]
has the

following form:

• if k ∩ l = ∅ then:

Σk;l =

(
αN

k −
(
αN

k

)2 −αN
k · αN

l

−αN
k · αN

l αN
l −

(
αN

l

)2

)
, (C.25)

• if k ⊂ l then:

Σk;l =

(
αN

k −
(
αN

k

)2
αN

k ·
(
1 − αN

l

)

αN
k ·
(
1 − αN

l

)
αN

l −
(
αN

l

)2

)
, (C.26)

i

i

i

i

i

i

i

i

216 APPENDIX C. MODEL CHECKING BY DISCRETE EVENT SIMULATION

• if k ∩ l 6= ∅ ∧ k 6⊂ l ∧ l 6⊂ k then:

Σk;l =

(
αN

k −
(
αN

k

)2
αN

k∩l − αN
k · αN

l

αN
k∩l − αN

k · αN
l αN

l −
(
αN

l

)2

)
, (C.27)

Proof First, note that for any k, l ∈ N by Lemma 56:

V ar [fk (PN)] = αN
k −

(
αN

k

)2
, V ar [fl (PN)] = αN

l −
(
αN

l

)2
.

Now let us provide the covariances for each of the cases under consideration, note that
k 6= l:

• k∩ l = ∅: The condition yields that fk (PN) ·fl (PN) = 0 and thus by Lemma 56
we obtain:

Cov [fk (PN) , fl (PN)] = Cov [fl (PN) , fk (PN)] = −αN
k αN

l .

• k ⊂ l: The condition implies that fk (PN) · fl (PN) = fk (PN) and thus by
Lemma 56 we obtain:

Cov [fk (PN) , fl (PN)] = Cov [fl (PN) , fk (PN)] = α
N
k − α

N
k · αN

l = α
N
k ·
“

1 − α
N
l

”

.

• k ∩ l 6= ∅ ∧ k 6⊂ l ∧ l 6⊂ k: From the condition it follows that fk (PN) · fl (PN) =
fk∩l (PN) and thus by Lemma 56 we obtain:

Cov [fk (PN) , fl (PN)] = Cov [fl (PN) , fk (PN)] = αN
k∩l − αN

k αN
l .

�

The following lemma uses multi-dimensional Central Limit Theorem 55 in order to
prove the dependency of the r. v. defining the c. i., when M → ∞.

Lemma 58 For all k ∈ N , αN
k 6∈ {0, 1}, the limit:

lim
M→∞

(∑M
i=1 fk

(
Pi

N

)
− MαN

k√
M

)
= Lk, (C.28)

exists. The pairs of r. v. Lk and Ll for any k, l ∈ N and k 6= l are dependent.

Proof The Central Limit Theorem 16 guarantees existence of the limit defined by
Equation (C.28) in case fk (PN) has a non-zero variance. From Lemma 56 the variance

of fk (PN) equals to αN
k −

(
αN

k

)2 6= 0 for αN
k 6∈ {0, 1}.

It is known that if two r. v. are independent then their covariance is zero. There-
fore in order to show the dependency of the r. v. Lg and Lt it suffices to show that
Cov [Lk, Ll] 6= 0.

i

i

i

i

i

i

i

i

C.1. UNBOUNDED-UNTIL OPERATOR 217

Since for any k ∈ N we have E
[
(fk (PN))

2
]

< ∞ then the following limit exists

due to multi-dimensional Central Limit Theorem 55:

lim
M→∞

(∑M
i=1

(
fg

(
Pi

N

)
, ft

(
Pi

N

))
− M

(
αN

g , αN
t

)
√

M

)
= (Lg, Lt) . (C.29)

Note that the r. v. Lk and Ll obtained from Equation (C.28) are the same as obtained by
Equation (C.29), because all operations on the vectors

(
fg

(
Pi

N

)
, ft

(
Pi

N

))
are applied

component wise. Also, thanks to multi-dimensional Central Limit Theorem 55, we
know that the r. v. Lk and Ll have the covariance matrix Σk;l defined by Lemma 57.
The latter means that Cov [Lk, Ll] = Cov [fk (PN) , fl (PN)].

Since |N | = 5 and we have to prove the pairwise dependency of the r. v., consider
the following ten cases:

1. The r. v. Lg and Lt: We have {g} ∩ {t} = ∅ and thus by Lemma 57 it follows
that:

Cov [Lg, Lt] = −αN
g · αN

t 6= 0,

since for any k ∈ N we have αN
k 6∈ {0, 1}.

2. The r. v. Lb and Lt: Similar to the case 1, since {b} ∩ {t} = ∅.

3. The r. v. Lg and Lb: Similar to the case 1, since {g} ∩ {b} = ∅.

4. The r. v. Lb and Lg,t: Similar to the case 1, since {b} ∩ {g, t} = ∅.

5. The r. v. Lg and Lb,t: Similar to the case 1, since {g} ∩ {b, t} = ∅.

6. The r. v. Lg and Lg,t: Similar to the case 1. Notice that {g} ⊂ {g, t} and thus:

Cov [Lg, Lg,t] = αN
g ·
(
1 − αN

g,t

)
6= 0,

since for any k ∈ N we have αN
k 6∈ {0, 1}.

7. The r. v. Lt and Lg,t: Similar to the case 6, since {t} ⊂ {g, t}.

8. The r. v. Lb and Lb,t: Similar to the case 6, since {b} ⊂ {b, t}.

9. The r. v. Lt and Lb,t: Similar to the case 6, since {t} ⊂ {b, t}.

10. The r. v. Lg,t and Lb,t: Similar to the case 1. Notice that {g, t} ∩ {b, t} 6= ∅,
{g, t} 6⊂ {b, t} and {b, t} 6⊂ {g, t} and thus:

Cov [Lg,t, Lb,t] = αN
t − αN

g,t · αN
b,t = by Proposition 18 =

= αN
t −

(
αN

g + αN
t

)
·
(
αN

b + αN
t

)
=
(
1 − αN

g − αN
b

)
· αN

t − αN
g · αN

b −
(
αN

t

)2
=

= by Proposition 18 =
(
αN

t

)2 − αN
g · αN

b −
(
αN

t

)2
= −αN

g · αN
b 6= 0,

since for any k ∈ N we have αN
k 6∈ {0, 1}.

�

i

i

i

i

i

i

i

i

218 APPENDIX C. MODEL CHECKING BY DISCRETE EVENT SIMULATION

Proposition 59 Let
−→
PN =

(
P1

N , . . . ,PM
N

)
be a sample of M ∈ N≥2 independent

observations, and αN
k 6∈ {0, 1} for any k ∈ N . The c. i. of αN

k and αN
l for any k, l ∈ N

and k 6= l, derived using Equation (6.2) with σN
k = V ar

[
fk

(
Pi

N

)]
used in place of

V
N

k , are dependent in the limit of M → ∞.

Proof The c. i. mentioned above are based on the r. v. defined by the limit:

lim
M→∞

(∑M
i=1 fk

(
Pi

N

)
− MαN

k

σN
k ·

√
M

)
= L′

k.

Lemma 58 proves dependency of the r. v. defined by the similar limit. The only
difference is that the variance σN

k is excluded from the divider of the expression under
the limit in Equation (58). This causes the r. v. Lk to converge to the normal distri-

bution N
(
0,
(
σN

k

)2)
, whereas L′

k converges to standard normal distribution N(0, 1).

In fact, it is clear that the r. v. Lk/σN
k = L′

k, because:

1

σN
k

· Lk =
1

σN
k

· lim
M→∞

(∑M
i=1 fk

(
Pi

N

)
− MαN

k√
M

)
=

= lim
M→∞

(∑M
i=1 fk

(
Pi

N

)
− MαN

k

σN
k ·

√
M

)
= L′

k

The latter means that for any k, l ∈ N : Lk and Ll are dependent iff L′
k and L′

l are
dependent. This concludes the proof. �

C.1.2 Confidence intervals, the closed form

The following theorem gives us the possible c. i. of αg, based on independent samples.

Theorem 60 For independent samples
−→
PN ,

−→
P′

N and
−→
P′′

N of M ∈ N≥2 independent
observations each, and the c. i. of αN

k for all k ∈ N with confidence 1−β, the following

i

i

i

i

i

i

i

i

C.1. UNBOUNDED-UNTIL OPERATOR 219

holds:

Prob
“

A
g

l

“−→
PN

”

≤ αg ≤ A
g
r

“−→
PN

”

+ A
t
r

“−→
P′

N

””

� (1 − β) ·

„

1 −
β

2

«

, (C.30)

Prob
“

1 −
“

A
b
r

“−→
PN

”

+ A
t
r

“−→
P′

N

””

≤ αg ≤ 1 − A
b
l

“−→
PN

””

� (1 − β) ·

„

1 −
β

2

«

, (C.31)

Prob
“

A
g
l

“−→
PN

”

≤ αg ≤ A
g,t
r

“−→
P′

N

””

�

„

1 −
β

2

«2

, (C.32)

Prob
“

1 − A
b,t
r

“−→
PN

”

≤ αg ≤ 1 − A
b
l

“−→
P′

N

””

�

„

1 −
β

2

«2

, (C.33)

Prob
“

A
g

l

“−→
PN

”

≤ αg ≤ 1 − A
b
l

“−→
P′

N

””

�

„

1 −
β

2

«2

, (C.34)

Prob
“

1 − A
b,t
r

“−→
PN

”

≤ αg ≤ A
g,t
r

“−→
P′

N

””

�

„

1 −
β

2

«2

, (C.35)

Prob
“

1 −
“

A
b
r

“−→
P′′

N

”

+ A
t
r

“−→
P′

N

””

≤ αg ≤ A
g
r

“−→
PN

”

+ A
t
r

“−→
P′

N

””

�

„

1 −
β

2

«3

, (C.36)

Prob
“

1 −
“

A
b
r

“−→
P′′

N

”

+ A
t
r

“−→
PN

””

≤ αg ≤ A
g,t
r

“−→
P′

N

””

�

„

1 −
β

2

«3

, (C.37)

Prob
“

1 − A
b,t
r

“−→
P′′

N

”

≤ αg ≤ A
g
r

“−→
PN

”

+ A
t
r

“−→
P′

N

””

�

„

1 −
β

2

«3

. (C.38)

Proof Consider Definition 20 for the sample
−→
PN , then let us agree to add the prime

and the double prime symbols to the events obtained from the samples
−→
P′

N and
−→
P′′

N

correspondingly. For example E
′t
r and E

′′g,t
r . Remember that events being obtained

from independent samples are independent.
Let us derive the above mentioned confidence intervals, using Proposition 43 of

Appendix C.1:

1. Equation (C.30): Using Proposition 43 with Al = αN
g and Ar = αN

g + αN
t we

get:

Eg ∧ E
′t
r =⇒ Ag

l

(−→
PN

)
≤ αg ≤ Ag

r

(−→
PN

)
+ At

r

(−→
P′

N

)
,

which, because the probability of the consequent event is always greater or equal
than the probability of the antecedent event, implies:

Prob
(
Ag

l

(−→
PN

)
≤ αg ≤ Ag

r

(−→
PN

)
+ At

r

(−→
P′

N

))
≥ Prob

(
Eg ∧ E

′t
r

)
. (C.39)

Using Equation (6.7) of Section 6.2.3 and noting that the events Eg and Et
r are

independent we have:

Prob
(
Eg ∧ E

′t
r

)
= Prob (Eg) · Prob

(
E

′t
r

)
≈ (1 − β) ·

(
1 − β

2

)
,

and therefore, by Definition 22, Equation (C.39) implies Equation (C.30).

All the remaining cases are proved similarly.

2. Equation (C.31): Consider Al = 1 −
(
αN

b + αN
t

)
, Ar = 1 − αN

b , Eb and E
′t
r .

i

i

i

i

i

i

i

i

220 APPENDIX C. MODEL CHECKING BY DISCRETE EVENT SIMULATION

3. Equation (C.32): Consider Al = αN
g , Ar = αN

g,t, Eg
l and E

′g,t
r .

4. Equation (C.33): Consider Al = 1 − αN
b,t, Ar = 1 − αN

b , Eb,t
r and E

′b
l .

5. Equation (C.34): Consider Al = αN
g , Ar = 1 − αN

b , Eg
l and E

′b
l .

6. Equation (C.35): Consider Al = 1 − αN
b,t, Ar = αN

g,t, Eb,t
r and E

′g,t
r .

7. Equation (C.36): Consider Al = 1−
(
αN

b + αN
t

)
, Ar = αN

g +αN
t , E

′t
r , E

′′b
r and

Eg
r .

8. Equation (C.37): Consider Al = 1−
(
αN

b + αN
t

)
, Ar = αN

g,t, Et
r, E

′′b
r and E

′g,t
r .

9. Equation (C.38): Consider Al = 1 − αN
b,t, Ar = αN

g + αN
t , E

′t
r , E

′′b,t
r and Eg

r .

�

Proposition 61 For any N ∈ N≥0, two independent samples
−→
PN and

−→
P′

N of M ∈ N>0

independent observations each, the following limit holds a. s.

lim
M→∞

∣∣∣∣∣∣

Γk
(−→
PN

)

M
−

Γk
(−→
P′

N

)

M

∣∣∣∣∣∣

 = 0 (C.40)

Proof Applying the strong law of large numbers for Bernoulli trials discussed in Sec-
tion 5.7 we obtain:

Prob

 lim

M→∞

Γk
(−→
PN

)

M

 = αN

k

 = 1, Prob

 lim

M→∞

Γk
(−→
P′

N

)

M

 = αN

k

 = 1

Due to
−→
PN and

−→
P′

N being independent we have:

Prob

 lim

M→∞

Γk
(−→
PN

)

M

 = αN

k

∧
lim

M→∞

Γk
(−→
P′

N

)

M

 = αN

k

 = 1, (C.41)

and now it suffices to notice the implication:

lim
M→∞

Γk
(−→
PN

)

M

 = αN

k

∧
lim

M→∞

Γk
(−→
P′

N

)

M

 = αN

k =⇒

=⇒ lim
M→∞

∣∣∣∣∣∣

Γk
(−→
PN

)

M
−

Γk
(−→
P′

N

)

M

∣∣∣∣∣∣

 = 0,

which with Equation (C.41) gives that Equation (C.40) holds a. s. �

Lemma 62 For any fixed confidence 1 − β, k ∈ N and M ∈ N≥2 the following holds:
√

Γk
N ·
(
M − Γk

N

)

M · (M − 1)
≤

√
2

i

i

i

i

i

i

i

i

C.1. UNBOUNDED-UNTIL OPERATOR 221

Proof First of all notice that Γk
N ∈ N[0,M] and thus:

0 ≤ Γk
N ·
(
M − Γk

N

)

M · (M − 1)
≤ M − Γk

N

M − 1
.

The right-hand side of the inequality is a linear function of Γk
N which monotonously

decreases with increase of Γk
N and therefore we have:

M − Γk
N

M − 1
≤ M

M − 1
.

To conclude the proof we should show that the right hand side of the last inequality is
less or equal than 2.

Consider the function x
x−1 with x ∈ R≥2. Notice that for x = 2 we have x

x−1 = 2
and the function is decreasing on R≥2 since there its first derivative is negative:

(
x

x − 1

)′
= − 1

(x − 1)
2 < 0.

Therefore we conclude that x
x−1 ≤ 2 on R≥2, implying that M

M−1 ≤ 2 on N≥2. �

Lemma 63 For a fixed confidence 1 − β, k ∈ N and M ∈ N≥2 the following holds:

X
N

k −
√

2 · z̃n (β)√
M

≤ Ak
l

(
Γk

N

)
≤ X

N

k ≤ Ak
r

(
Γk

N

)
≤ X

N

k +
√

2 · z̃n (β)√
M

.

Proof Follows directly from Lemma 46 of Appendix C.1, Lemma 62 above, and Equa-
tions (6.4). �

Theorem 64 For any N ∈ N≥0, confidence 1 − β, two independent samples
−→
PN and−→

P′
N of M ∈ N>0 independent observations each, the following holds:

Prob
(

lim
M→∞

(∣∣∣Ak
l

(−→
PN

)
− Ak

l

(−→
P′

N

)∣∣∣
)

= 0
)

= 1, (C.42)

Prob
(

lim
M→∞

(∣∣∣Ak
r

(−→
PN

)
− Ak

r

(−→
P′

N

)∣∣∣
)

= 0
)

= 1. (C.43)

Proof Clearly, it suffices to prove one of Equations (C.42) and (C.43) due to the
symmetric structure of Ak

l (.) and Ak
r (.). Let us choose Equation (C.42) and analyze

the bounds of
∣∣∣Ak

l

(−→
PN

)
− Ak

l

(−→
P′

N

)∣∣∣ in the deterministic sense. From Lemma 63 it

follows that:

Γk
(−→
PN

)

M
−
√

2 · z̃n (β)√
M

≤ Ak
l

(−→
PN

)
≤

Γk
(−→
PN

)

M
,

Γk
(−→
P′

N

)

M
−
√

2 · z̃n (β)√
M

≤ Ak
l

(−→
P′

N

)
≤

Γk
(−→
P′

N

)

M
,

i

i

i

i

i

i

i

i

222 APPENDIX C. MODEL CHECKING BY DISCRETE EVENT SIMULATION

and therefore, for Dk
M =

Γk
“−−→
PN

”

M − Γk
“−−→
P′

N

”

M we have:

Dk
M −

√
2 · z̃n (β)√

M
≤ Ak

l

(−→
PN

)
− Ak

l

(−→
P′

N

)
≤ Dk

M +
√

2 · z̃n (β)√
M

. (C.44)

Obviously, −
∣∣Dk

M

∣∣ ≤ Dk
M ≤

∣∣Dk
M

∣∣ and thus Equation (C.44) can be transformed into:

−
∣∣Dk

M

∣∣−
√

2 · z̃n (β)√
M

≤ Ak
l

(−→
PN

)
− Ak

l

(−→
P′

N

)
≤
∣∣Dk

M

∣∣+
√

2 · z̃n (β)√
M

,

that in its turn, due to z̃n (β) ≥ 0, is equivalent to:

∣∣∣Ak
l

(−→
PN

)
− Ak

l

(−→
P′

N

)∣∣∣ ≤
∣∣Dk

M

∣∣+
√

2 · z̃n (β)√
M

. (C.45)

Without a doubt lim
M→∞

(√
2 · fzn(β)√

M

)
= 0 and by Proposition 61 we have:

Prob
(

lim
M→∞

(|DM |) = 0
)

= 1. (C.46)

Due to Equation (C.45) the following implication holds:

(
lim

M→∞
(|DM |) = 0

∧
lim

M→∞

(√
2 · z̃n (β)√

M

)
= 0

)
=⇒

=⇒ lim
M→∞

(∣∣∣Ak
l

(−→
PN

)
− Ak

l

(−→
P′

N

)∣∣∣
)

= 0,

from which, by Equation (C.46), we conclude that Equation (C.42) holds too. �

Lemma 65 For a fixed confidence 1 − β and a sample
−→
PN of M ∈ N≥2 observations:

Ag
l

(−→
PN

)
= 1 − Ab,t

r

(−→
PN

)
, Ag,t

r

(−→
PN

)
= 1 − Ab

l

(−→
PN

)
.

Proof First, using Lemma 45 of Appendix C.1 let us notice that:

Ag
l

(−→
PN

)
= X

N

g − z̃n (β)

M
· V N

g , 1 − Ab,t
r

(−→
PN

)
= X

N

g − z̃n (β)

M
· V N

b,t

Ag,t
r

(−→
PN

)
= X

N

g,t +
z̃n (β)

M
· V N

g,t, 1 − Ab
l

(−→
PN

)
= X

N

g,t +
z̃n (β)

M
· V N

b

Therefore, in order to prove the claim of this lemma we have to show that:

V
N

g = V
N

b,t, and V
N

g,t = V
N

b . (C.47)

Second, consider the fact that by Lemma 44 of Appendix C.1 we have:

Γg
N = M − Γb,t

N , and Γg,t
N = M − Γb

N .

Then using the representation of V
N

k given by Equation (6.5) it is clear that Equa-
tions (C.47) hold. �

i

i

i

i

i

i

i

i

C.1. UNBOUNDED-UNTIL OPERATOR 223

Lemma 66 For a fixed confidence 1 − β, M ∈ N≥2, N ∈ N≥0 and sample
−→
PN of M

observations the following holds:

Ag,t
r

(−→
PN

)
≤ Ag

r

(−→
PN

)
+ At

r

(−→
PN

)
, Ab,t

r

(−→
PN

)
≤ Ab

r

(−→
PN

)
+ At

r

(−→
PN

)
. (C.48)

Proof Clearly, it suffices to prove one of the given inequalities, since the proof for the
other one is equivalent.

Using Equation (6.4), the first inequality of Equation (C.48) can be rewritten as:

X
N

g,t +
z̃n (β) · V N

g,t√
M

≤ X
N

g +
z̃n (β) · V N

g√
M

+ X
N

t +
z̃n (β) · V N

t√
M

. (C.49)

Here z̃n (β) ≥ 0, and X
N

g,t = X
N

g + X
N

t by Lemma 45. Therefore, in case z̃n (β) = 0,
Equation (C.49) trivially holds, and for z̃n (β) > 0 it is equivalent to:

V
N

g,t ≤ V
N

g + V
N

t ,

that using Equation (6.5) can be rewritten as:

√√√√
M∑

i=1

(
fg,t

(
Pi

N

)
− Γg,t

N

M

)2

≤

√√√√
M∑

i=1

(
fg

(
Pi

N

)
− Γg

N

M

)2

+

√√√√
M∑

i=1

(
ft

(
Pi

N

)
− Γt

N

M

)2

.

Considering the fact that fg,t

(
Pi

N

)
= fg

(
Pi

N

)
+ ft

(
Pi

N

)
for any i ∈ N[1,M] (and thus

Γg,t
N = Γg

N + Γt
N), the latter is equivalent to:

√√√√
M∑

i=1

(γi + δi)
2 ≤

√√√√
M∑

i=1

γ2
i +

√√√√
M∑

i=1

δ2
i , (C.50)

with γi = fg

(
Pi

N

)
− Γg

N

M and δi = ft

(
Pi

N

)
− Γt

N

M .
Equation (C.50) holds, because it is the triangle inequality for the M -dimensional

Euclidean space. �

Lemma 67 For a fixed confidence 1− β, N ∈ N≥0, and a finite-state DTMC P, with

a positive probability there exist independent samples
−→
PN ,

−→
P′

N and
−→
P′′

N of M ∈ N≥2

independent observations each, such that:

Ag,t
r

(−→
PN

)
≤ Ag

r

(−→
P′′

N

)
+ At

r

(−→
P′

N

)
, and Ab,t

r

(−→
PN

)
≤ Ab

r

(−→
P′′

N

)
+ At

r

(−→
P′

N

)
.

(C.51)

Proof Clearly, it suffices to prove one of the given inequalities, since the proof for the
other one is equivalent.

i

i

i

i

i

i

i

i

224 APPENDIX C. MODEL CHECKING BY DISCRETE EVENT SIMULATION

Let PN be a r. v. defining the state of P at epoch N . Then, since we have a finite-

state Markov chain and N < ∞, a sample
−→
PN obtained via simulations of PN has a

positive probability to appear. The latter means that, continuing simulations, with a

positive probability we can obtain an independent samples
−→
PN ,

−→
P′

N and
−→
P′′

N that are
equal up to the permutation of observations.

Now, to conclude the proof, it suffices to show that the first of Equations (C.51)

holds for any samples
−→
PN ,

−→
P′

N and
−→
P′′

N equal up to permutation of the observations.

In the latter case, due to Γg,t
N , Γg

N and Γt
N having the same values on

−→
PN ,

−→
P′

N and−→
P′′

N , it is enough to consider just one set of such samples. Let us take
−→
PN =

−→
P′

N =
−→
P′′

N

then the first of Equations (C.51) holds due to Lemma 66. �

Lemma 68 For two c. i.
[
A1

l , A
1
r

]
and

[
A2

l , A
2
r

]
such that A2

l ≤ A1
r and A1

l ≤ A2
r Algo-

rithm 3 gives a non-contradictory answer.

Proof Let us consider only the case of ⊲⊳∈ {≤} because all the other cases are similar.
Depending on the value of b ∈ R, Algorithm 3 will give answers:

• For the c. i.
[
A1

l , A
1
r

]
: FALSE if b ∈ F =

(
−∞, A1

l

)
, NN if b ∈ N =

[
A1

l , A
1
r

)
,

and TRUE if b ∈ T =
[
A1

r , +∞
)

• For the c. i.
[
A2

l , A
2
r

]
: FALSE if b ∈ F ′ =

(
−∞, A2

l

)
, NN if b ∈ N ′ =

[
A2

l , A
2
r

)
,

and TRUE if b ∈ T ′ =
[
A2

r , +∞
)

In order to have TRUE and FALSE answers for the two c. i. simultaneously we need
to have either F ∪ T ′ 6= ∅ or F ′ ∪ T 6= ∅. Which is impossible due to A2

l ≤ A1
r and

A1
l ≤ A2

r . �

C.1.3 The dependency from sample size and simulation length

Lemma 69 For Ak
l

(−→
PN

)
and Ak

r

(−→
PN

)
given by Equation (6.4) let k ∈ N , z̃n (β) ≥

0, M ∈ N≥2 and Γk
N ∈ N[0,M] then the following holds:

• Ak
l

(
Γk

N

)
= 0 iff Γk

N = (fzn(β))2·M
(fzn(β))2+M−1

or Γk
N = 0.

• Ak
r

(
Γk

N

)
= 1 iff Γk

N = M·(M−1)

(fzn(β))2+M−1
or Γk

N = M .

Proof Below, without a loss of generality, we are going to treat Ak
l

(
Γk

N

)
and Ak

r

(
Γk

N

)

as functions of some variable x ∈ R[0,M], i.e. we are going to solve two equation:

Ak
l (x) = 0, and Ak

r (x) = 1.

• From Equation (6.4) and Lemma 46 we have that Ak
l (x) = 0 is equivalent to:

x

M
− z̃n (β)√

M
·
√

x · (M − x)

M · (M − 1)
= 0.

i

i

i

i

i

i

i

i

C.1. UNBOUNDED-UNTIL OPERATOR 225

Which via a series of trivial transformations can be rewritten as:
(
(z̃n (β))

2
+ M − 1

)
· x2 − M · (z̃n (β))

2 · x = 0.

The latter has only two real roots, namely:

x1 =
(z̃n (β))2 · M

(z̃n (β))
2

+ M − 1
, and x2 = 0.

Note that 0 ≤ x1 ≤ M , where the left part of the inequality is trivial and the

right part is due to the fact that (fzn(β))2

(fzn(β))2+M−1
≤ 1, since M − 1 ≥ 1.

• From Equation (6.4) and Lemma 46 we have that Ak
r (x) = 1 is equivalent to:

x

M
+

z̃n (β)√
M

·
√

x · (M − x)

M · (M − 1)
= 1.

Which via a series of trivial transformations can be rewritten as:
(
(z̃n (β))

2
+ M − 1

)
· x2 −M ·

(
(z̃n (β))

2
+ 2 · (M − 1)

)
· x + M2 · (M − 1) = 0.

The latter has only two real roots, namely:

x1 =
M · (M − 1)

(z̃n (β))
2

+ M − 1
, and x2 = M.

Note that 0 ≤ x1 ≤ M , where the left part of the inequality is trivial and the
right part is due to the fact that M−1

(fzn(β))2+M−1
≤ 1, since (z̃n (β))

2 ≥ 0.

�

Lemma 70 For Ak
l

(−→
PN

)
and Ak

r

(−→
PN

)
given by Equation (6.4) let k ∈ N , z̃n (β) ≥

0, M ∈ N≥2 and Γk
N ∈ N(0,M) then the following holds:

• Ak
l

(
Γk

N

)
is increasing on N(x1,M), with x1 = M

2 ·
(
1 −

√
M−1

(fzn(β))2+M−1

)
.

• Ak
r

(
Γk

N

)
is increasing on N(0,x2), with x2 = M

2 ·
(
1 +

√
M−1

(fzn(β))2+M−1

)
.

Proof Below, without a loss of generality, we are going to treat Ak
l

(
Γk

N

)
and Ak

r

(
Γk

N

)

as functions of some variable x ∈ R[0,M], i.e Ak
l (x) and Ak

r (x).
In order to prove that a function is increasing on some interval we shall show that its

first derivative is strictly positive on it. For doing so we should find where the derivative
turns into zero or does not exist and analyze its sign in between these points.

• The first derivative of Ak
l (x) equals to:

1

M
·
(

1 − z̃n (β)√
M − 1

· M − 2 · x
2 ·
√

x · (M − x)

)
. (C.52)

i

i

i

i

i

i

i

i

226 APPENDIX C. MODEL CHECKING BY DISCRETE EVENT SIMULATION

Clearly it does not exist (turns into infinity) only when x = 0 or x = M . In
order to find the points where it turns into zero, after a trivial rewriting of the
derivative, we have to solve the following equation:

2 ·
√

(M − 1) · x · (M − x) = z̃n (β) · (M − 2 · x) . (C.53)

Notice that the left-hand side of the equation is non-negative and thus the right
hand side should be non-negative too, implying the condition x ≤ M

2 . Under this
condition we can square both sides of the equation and after a series of trivial
transformations obtain the following:

4 ·
(
(z̃n (β))2 + M − 1

)
·x2 − 4 ·M ·

(
(z̃n (β))2 + M − 1

)
·x+ M2 · (z̃n (β))2 = 0.

This equation has two real roots:

x1,2 =
M

2
·
(

1 ±
√

M − 1

(z̃n (β))
2

+ M − 1

)

Remember, that we should have x ≤ M
2 and thus there is only one suitable root:

x1 =
M

2
·
(

1 −
√

M − 1

(z̃n (β))
2
+ M − 1

)

Now, on N(0,M) the derivative of Ak
l (x) exists and turns into zero only in x1. Let

us take x = M
2 that belongs to N(x1,M), then Equation (C.52) becomes equal to

1
M . The latter is positive, meaning that the derivative of Ak

l (x) is positive on
N(x1,M) and thus Ak

l (x) is increasing on it.

• The first derivative of Ak
r (x) equals to:

1

M
·
(

1 +
z̃n (β)√
M − 1

· M − 2 · x
2 ·
√

x · (M − x)

)
.

The rest of the proof is similar to the previous case, the only difference is that
for zero points we get equation:

2 ·
√

(M − 1) · x · (M − x) = −z̃n (β) · (M − 2 · x) .

That has the same roots as Equation (C.53) but has to be solved under the
condition x ≥ M

2 and thus we shall take the root x2.

�

Proposition 71 For Ak
l

(−→
PN

)
and Ak

r

(−→
PN

)
given by Equation (6.4) let k ∈ N ,

z̃n (β) ≥ 0, M ∈ N≥2, Γk
N ∈ N(0,M) then:

Γ1 =
(z̃n (β))

2 · M
(z̃n (β))

2
+ M − 1

, and Γ2 =
M · (M − 1)

(z̃n (β))
2
+ M − 1

.

i

i

i

i

i

i

i

i

C.2. STEADY-STATE OPERATOR 227

• Ak
l

(
Γk

N

)
is increasing from 0 to 1.0 with the increase of Γk

N ∈ N(Γ1,M),

• Ak
r

(
Γk

N

)
is increasing from 0 to 1.0 with the increase of Γk

N ∈ N(0,Γ2)
.

Proof This proposition is an immediate consequence of Lemma 69 and Lemma 70 if
we can show that:

M

2
·
(

1 −
√

M − 1

(z̃n (β))
2

+ M − 1

)
≤ Γ1, (C.54)

Γ2 ≤ M

2
·
(

1 +

√
M − 1

(z̃n (β))
2

+ M − 1

)
. (C.55)

First let us define y =
√

M−1
(fzn(β))2+M−1

, clearly y ∈ R(0,1], and also notice that:

Γ1 = M − Γ2.

Then Equations (C.54) and (C.55) can be both rewritten as:

2 · y2 − y − 1 ≤ 0, (C.56)

that trivially holds since the function on the left-hand side turns into zero only at
points y1 = − 1

2 , y2 = 1 and in between them its values are negative. Now remember
that in our case y ∈ R(0,1] and therefore Equations (C.54) and (C.55) hold. �

C.2 Steady-state operator

Theorem 72 For the c. i. given by Equations (6.26) and (6.27), and based on inde-
pendently obtained samples, the following c. i. results:

Prob

(
K∑

i=1

As0

l

(−→
Pi

)
· Ai

l ≤ Prob∞ (s0, G) ≤
K∑

i=1

As0
r

(−→
P′

i

)
· Ai

r

)
�

K∏

i=1

ξr
i ξs

i , (C.57)

under the assumption that for all i ∈ I : As0

l

(−→
Pi

)
, As0

r

(−→
P′

i

)
, Ai

l , A
i
r ∈ R[0,1].

Proof First let us notice that I = {1, . . . , K}. Then using the fact that the c. i. given
by Equations (6.26) and (6.27) are based on independently obtained samples we can
conclude that:

Prob

(
∧

i∈I

((
Ai

l ≤ πg
i ≤ Ai

r

)
∧
(
As0

l

(−→
Pi

)
≤ ps0

i ≤ As0
r

(−→
P′

i

))))
�

K∏

i=1

ξr
i ξs

i . (C.58)

Keeping in mind that for all i ∈ I : As0

l

(−→
Pi

)
, As0

r

(−→
P′

i

)
, Ai

l, A
i
r ∈ R[0,1] we have the

following implication:
((

Ai
l ≤ πg

i ≤ Ai
r

)
∧
(
As0

l

(−→
Pi

)
≤ ps0

i ≤ As0
r

(−→
P′

i

)))
=⇒

=⇒
(
As0

l

(−→
Pi

)
· Ai

l ≤ ps0

i · πg
i ≤ As0

r

(−→
P′

i

)
· Ai

r

)
. (C.59)

i

i

i

i

i

i

i

i

228 APPENDIX C. MODEL CHECKING BY DISCRETE EVENT SIMULATION

Now it suffices to notice that:
(
∧

i∈I

(
As0

l

(−→
Pi

)
· Ai

l ≤ ps0

i · πg
i ≤ As0

r

(−→
P′

i

)
· Ai

r

))
=⇒

=⇒
(

K∑

i=1

As0

l

(−→
Pi

)
· Ai

l ≤
K∑

i=1

ps0

i · πg
i ≤

K∑

i=1

As0
r

(−→
P′

i

)
· Ai

r

)
, (C.60)

where the right-hand side gives the c. i. borders for Prob∞ (s0, G), see Equation (6.25),
that is obtained by summing up all the inequalities from the disjunction on the left-
hand side. The last step of this proof is to admit that the inequality:

K∑

i=1

As0

l

(−→
Pi

)
· Ai

l ≤ Prob∞ (s0, G) ≤
K∑

i=1

As0
r

(−→
P′

i

)
· Ai

r,

is a consequence, see Equation (C.59) and (C.60), of the inequalities under the probabil-
ity measure of the c. i. in Equations (6.26) and (6.27). Therefore, by Equation (C.58),
we have that Equation (C.57) holds. �

Lemma 73 For any values A, B, C, D, E, F ∈ R≥0 such that A ≤ C ≤ B ≤ D and
E ≤ F , the following inequalities hold:

A + E ≤ C + E ≤ B + F ≤ D + F, and A · E ≤ C · E ≤ B · F ≤ D · F.

Proof Considering the fact that A, B, C, D, E, F ∈ R≥0, notice that:

• From A ≤ C it follows A + E ≤ C + E, from B ≤ D it follows B + F ≤ D + F ,
from C ≤ B and E ≤ F it follows C + E ≤ B + F and therefore we have:

A + E ≤ C + E ≤ B + F ≤ D + F.

• From A ≤ C it follows A ·E ≤ C ·E, from B ≤ D it follows B · F ≤ D · F , from
C ≤ B and E ≤ F it follows C · E ≤ B · F and therefore we have:

A · E ≤ C · E ≤ B · F ≤ D · F.

�

Theorem 74 (The c. i. of the error) For the c. i. given by Equation (6.26), based
on independently obtained samples, and the error bounds given by Equation (6.29), the
following c. i. results:

Prob

(
K∑

i=1

(p̃s0

i − εi) · Ai
l ≤ Prob∞ (s0, G) ≤

K∑

i=1

(p̃s0

i + εi) · Ai
r

)
�

K∏

i=1

ξs
i , (C.61)

under the assumption that for all i ∈ IG : p̃s0

i − εi, p̃
s0

i + εi, A
i
l , A

i
r ∈ R[0,1].

i

i

i

i

i

i

i

i

C.2. STEADY-STATE OPERATOR 229

Proof First let us notice that I = {1, . . . , K}. Then using the fact that the c. i. given
by Equations (6.26) are based on independently obtained samples we can conclude
that:

Prob

(
∧

i∈I

(
Ai

l ≤ πg
i ≤ Ai

r

)
)

�
K∏

i=1

ξs
i . (C.62)

Since for all i ∈ IG : p̃s0

i − εi, p̃
s0

i + εi, A
i
l , A

i
r ∈ R[0,1] we have an implication:

((
Ai

l ≤ πg
i ≤ Ai

r

)
∧ (p̃s0

i − εi ≤ ps0

i ≤ p̃s0

i + εi)
)

=⇒
=⇒

(
(p̃s0

i − εi) · Ai
l ≤ ps0

i · πg
i ≤ (p̃s0

i + εi) · Ai
r

)
. (C.63)

Now it suffices to notice that:
(
∧

i∈I

(
(p̃s0

i − εi) · Ai
l ≤ ps0

i · πg
i ≤ (p̃s0

i + εi) · Ai
r

)
)

=⇒

=⇒
(

K∑

i=1

(p̃s0

i − εi) · Ai
l ≤

K∑

i=1

ps0

i · πg
i ≤

K∑

i=1

(p̃s0

i + εi) · Ai
r

)
, (C.64)

where the right-hand side gives the c. i. borders for Prob∞ (s0, G), see Equation (6.25),
that is obtained by summing up all the inequalities from the disjunction on the left-
hand side. The last step of this proof is to admit that the inequality:

K∑

i=1

(p̃s0

i − εi) · Ai
l ≤ Prob∞ (s0, G) ≤

K∑

i=1

(p̃s0

i + εi) · Ai
r,

is a consequence, see Equation (C.63) and (C.64), of the inequalities under the proba-
bility measure of the c. i. in Equation (6.26). Therefore, by Equation (C.62), we have
that Equation (C.61) holds. �

	Introduction
	1 System validation
	2 Model checking Markov chains
	3 Outline of the dissertation

	I Numerical Model Checking
	1 Preliminaries
	1.1 Markov chains
	1.1.1 Discrete-time Markov chains
	1.1.2 Continuous-time Markov chains

	1.2 Model checking Markov chains
	1.2.1 Model checking discrete-time Markov chains
	1.2.2 Model checking continuous-time Markov chains
	1.2.3 Model checking Markov reward models

	1.3 Case studies
	1.3.1 Synchronous Leader Election Protocol (SLE)
	1.3.2 Birth-Death Process (BDP)
	1.3.3 Randomized Mutual Exclusion (RME)
	1.3.4 Crowds Protocol (CP)
	1.3.5 Tandem Queuing Network (TQN)
	1.3.6 Cyclic Server Polling System (CPS)
	1.3.7 Wireless Group Communication Protocol (WGC)
	1.3.8 Simple Peer-To-Peer Protocol (P2P)
	1.3.9 Workstation Cluster (WC)

	1.4 Probabilistic model checking tools
	1.4.1 PRISM
	1.4.2 ETMCC
	1.4.3 Ymer
	1.4.4 VESTA

	1.5 Conclusion

	2 Markov Reward Model Checker
	2.1 Functionality
	2.2 Implementation details
	2.2.1 Data structures
	2.2.2 Basic algorithms

	2.3 Tool usage
	2.4 Experiments and comparison
	2.4.1 Experimental setup
	2.4.2 Experimental results and analysis
	2.4.3 Conclusion

	2.5 Implementation analysis
	2.5.1 Steady-state property
	2.5.2 Reachability property
	2.5.3 Bounded-reachability properties
	2.5.4 Summary

	2.6 Implementation metrics
	2.7 MRMC test suite
	2.7.1 The test-suite metrics
	2.7.2 The test-suite coverage

	2.8 MRMC and the third-party projects
	2.9 Conclusion

	3 On-The-Fly Steady-State Detection
	3.1 Introduction
	3.1.1 Transient probabilities
	3.1.2 Time-bounded reachability

	3.2 Fox-Glynn error bound revisited
	3.3 Improved steady-state detection
	3.3.1 Transient analysis
	3.3.2 Time-bounded reachability
	3.3.3 Summary of results

	3.4 Safely detecting stationarity
	3.5 Experimental results
	3.6 Time complexity and empirical evaluation
	3.7 Conclusion

	4 Bisimulation Minimization
	4.1 Bisimulation
	4.2 Experiments
	4.2.1 Discrete time
	4.2.2 Continuous time
	4.2.3 Rewards

	4.3 Conclusion

	II Model Checking by Discrete Event Simulation
	5 Preliminaries
	5.1 Simulating random variables
	5.2 Point estimates
	5.3 Confidence intervals
	5.3.1 The standard confidence interval
	5.3.2 Normally-distributed random variables
	5.3.3 The width of the confidence interval
	5.3.4 An example

	5.4 Terminating simulation
	5.5 Steady-state simulation
	5.6 Discrete-time method for simulating CTMCs
	5.7 Bernoulli trials

	6 Model checking CSL
	6.1 Confidence intervals and model checking
	6.1.1 Confidence of model checking results
	6.1.2 Checking the confidence interval against the probability constraint
	6.1.3 Confidence intervals and hypothesis testing

	6.2 Unbounded-until operator
	6.2.1 Bounding the unbounded-reachability probability by transient probabilities
	6.2.2 Deriving a confidence intervals for the transient probabilities
	6.2.3 Deriving confidence intervals for the unbounded-reachability probability
	6.2.4 Choosing the best confidence intervals for the unbounded-reachability probability
	6.2.5 The confidence-interval dependency on the sample size and the simulation depth
	6.2.6 The model-checking procedure

	6.3 Steady-state operator
	6.3.1 The pure DES approach
	6.3.2 The hybrid approach

	6.4 Time-interval until operator
	6.5 Conclusion

	7 Experiments
	7.1 Tool parameters
	7.2 Experimental setup
	7.3 Experimental data
	7.3.1 Cyclic Server Polling System (CPS)
	7.3.2 Tandem Queuing Network (TQN)

	7.4 Conclusion

	III Conclusion
	8 Concluding remarks

	IV Appendices
	A Markov Reward Model Checker
	A.1 Profiling MRMC with gprof
	A.2 Test coverage of MRMC

	B On-The-Fly Steady-State Detection
	B.1 Fox-Glynn error bound revisited
	B.2 Criteria for steady-state detection
	B.2.1 Transient analysis
	B.2.2 Backward computations

	B.3 Safely detecting stationarity

	C Model Checking by Discrete Event Simulation
	C.1 Unbounded-until operator
	C.1.1 Dependency of the confidence intervals
	C.1.2 Confidence intervals, the closed form
	C.1.3 The dependency from sample size and simulation length

	C.2 Steady-state operator

